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Abstract
Nuclear power generation is an essential part of the electrical supply in the United 
States, and it is an effective way to achieve low carbon power generation. Nuclear 
power generation produces spent radioactive fuel. If improperly disposed of or 
improperly stored, spent fuel can affect the environment and human health. Currently, 
in the United States, spent fuel is typically stored in stainless steel canisters. Some 
stainless steel canisters deployed in coastal areas are subject to stress corrosion cracks. 
Long-term monitoring and to provide timely maintenance of the storage canisters is 
necessary to prevent leakage of spent fuel due to damaged canisters. Acoustic emission 
(AE) is a structural health monitoring (SHM) technique that can be utilized to monitor 
large-scale metallic structures because it is extremely sensitive to damage initiation and 
propagation in materials. However, the challenge in using AE is in deploying a minimal 
number of AE sensors on a canister due to cost and environmental restrictions while 
still being able to precisely detect and localize damage formation. The innovation of 
this paper lies in the development of an automated damage localization method to 
estimate the coordinates of damage by using a single AE sensor. A data fusion approach 
was designed to integrate the information from waveforms, fast Fourier transform (FFT) 
spectrums, and spectrum entropy and then convert the AE signals into three types of 
images along with short-time Fourier transform (STFT) and continuous wavelet 
transforms (CWT). A weighted ensemble regression-based convolutional neural 
network was proposed to analyze the images and compute the coordinates of damage. 
The proposed method was validated on a large-scale steel plate specimen that simulate 
the canister, and three-fold cross-validation was conducted to ensure the method was 
effectively evaluated. The results suggest that the proposed method has a high 
performance rate for locating damage. 

Keywords: Acoustic emission; Spent fuel storage canister; Source localization; 
Convolutional neural network

1. Introduction
Stainless steel is one of the most commonly utilized materials in infrastructure 

systems such as nuclear power facilities. Currently, spent fuel is stored in stainless steel 
canisters in the United States [1-3]. Welding is used to seal the top of the canister. 
Afterward, the entire canister is covered by a concrete overpack to avoid radioactive 
leakage [4]. The canisters, however, are potentially vulnerable to structural damage 
from stress corrosion cracking (SCC) due to the combined influence of residual stresses 
in the welded area at the top of the canisters and the high humidity and salinity of the 



3

environment in the coastal area where the canisters are stored [5]. This poses a 
significant threat to public safety. Therefore, inspecting the canisters, locating the 
damaged area(s), and providing informed maintenance on a regular basis are beneficial. 
Due to the sensitive nature of the spent fuel storage system, destructive detection is not 
desirable. Traditional nondestructive methods, including regular visual inspections, are 
often time-consuming and prone to human error. Furthermore, a visual inspection can 
be challenging to accomplish as the surface of the canister is covered with a concrete 
overpack. An automated nondestructive monitoring approach is desired to improve the 
feasibility and effectiveness of damage detection on the canister.

Several nondestructive approaches, such as radiographic inspection [6], ultrasonic 
testing [7], acoustic emission (AE) [8-10], and thermal imaging/infrared [11; 12], have 
been employed in the inspection and monitoring of infrastructural components. AE is 
an approach worth studying among those approaches as it is sensitive to damage 
formation and propagation on the surface or inside the material [13-15].  The AE signal 
is generated by the rapid release of damage-induced elastic energy when the damage 
occurs [16]. By attaching the AE sensor to the surface of the object, the AE signal is 
detected and recorded by the data acquisition system. The source localization of the 
damage can be conducted by deploying an array of sensors. Research related to AE 
sensor arrays has been widely conducted [17-19]. Holford et al. [17] utilized the AE 
sensor array and time of arrival (TOA) approach to detect and localize the defects on 
metallic landing gear components. The proposed approach was proved to be effective 
on a full-scale steel landing gear component undergoing fatigue loading. Soltangharaei 
et al. [18] studied the localization and identification of SCC damage on a 304 stainless 
steel plate by using the TOA approach and an unsupervised pattern recognition 
algorithm. AE signals induced by SCC were recorded by an AE sensor array including 
eight sensors. Khyzhniak et al. [19] proposed to use the AE sensor array and time 
difference of arrival (TDOA) method, an improved method based on TOA, to localize 
the sources in 2-dimensional space. The firefly algorithm and the gradient descent 
algorithm were adopted to assist in calculating the coordinates of the AE sources. The 
results show that the position of the AE sources can be accurately located.

Previous studies indicated that AE monitoring with multiple sensors has a good 
capability for detecting and identifying damages in specimens. However, the practical 
implementation of AE sensor arrays in realistic spent fuel storage canisters presents 
obstacles. The available area of the canisters where AE sensors can be deployed is 
limited as the canisters are covered by concrete overpacks. Therefore, sensors are 
usually positioned on the base support structure [4]. Damage produced by SCC, on the 
other hand, mainly occurs in the welded area near the top of the canister. Therefore, it 
is not feasible to locate damage on the spent fuel canister by deploying the AE sensor 
array around the damaged area. Adopting as few AE sensors as possible and conducting 
the source localization with artificial intelligence techniques may be a promising 
approach. 

Machine learning is a branch of artificial intelligence techniques. Machine 
learning relies on studying the features extracted from large amounts of data, finding 
patterns in the data, and then leveraging those patterns to make predictions without 
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human interpretation [20-23]. Deep learning is a technique that builds on the basis of 
machine learning. Instead of conducting feature engineering on the input data, it 
automatically extracts features from the raw data [24-27]. Machine learning and deep 
learning have been utilized in many studies in signal processing, such as anomaly 
detection in human electrocardiogram (ECG) signals [28; 29], the diagnosis of machine 
failure conditions [30; 31], and the analysis of seismic signals [32]. Recently, machine 
learning and deep learning have also been applied to AE source localization. 
Ebrahimkhanlou et al. [33] proposed an AE source localization method to predict AE 
source coordinates by deploying a sensor array and a stacked autoencoder network. Ai 
et al. [34] developed a passive health monitoring system to conduct zonal impacts 
localization on an aircraft component using one AE sensor. Random forest and stacked 
autoencoder networks were utilized to analyze the signals from one sensor.

Previous studies have proven that using machine learning and deep learning to 
localize AE signals can be promising and could be an option to localize SCC damage 
on spent fuel storage canisters. However, most current studies of AE source localization 
using machine learning and deep learning utilized sensor arrays to predict the source 
coordinates [33], and employed a single AE sensor for zonal localization [34; 35]. An 
AE single-sensor localizing methods using stacked denoising autoencoders was 
developed in [36] to estimate the coordinates. This study was carried out on a small-
scale plate (800 mm × 800 mm × 3.2 mm). The signals were not heavily attenuated and 
the AE sensor with the high operating frequency range (such as PK15I, with operating 
frequency from 100-450 kHz) can be used, so that the received AE signal can contain 
valid information in the 100-400 kHz frequency band. However, in the field application, 
the spent fuel storage canisters are relatively large in size (over 5000 mm in height), the 
elastic wave can be severely attenuated when transmitted over such long distances. 
Some useful information relating to the location of the source may be lost in the wave 
propagation process. On the other hand, the sensitive low-frequency resonance sensors 
(with operating frequency less than 100 kHz) are generally used to ensure that the AE 
signal can be received over long distances. This results in the received signal containing 
very few information in the 100-400 kHz band. The two points mentioned above result 
in a large amount of important information being missing from the signals received by 
single-sensors on large structures. Therefore, a more efficient algorithm is needed to 
extract deeper effective features from the residual information of the signals and 
estimate the AE source coordinates on the large-scale specimen. Currently, no research 
has been done to accomplish this. To fill the gap, this paper proposes a weighted 
ensemble regression-based convolutional neural network (WER-CNN) for source 
localization on large-scale spent fuel storage canisters using minimal number of AE 
sensor. The main contributions of this paper are: (1) A dataset of AE signals created by 
conducting pencil-lead-break (PLB) experiments on the specimen to simulate SCC 
damage; (2) a new signal fusion method named WFE-fusion is proposed to fuse the 
original waveform, FFT spectrum, and spectral entropy of each AE signal and convert 
them into RGB images; (3) each AE signal was converted to three RGB images via 
three methods: WFE-fusion, Short-time Fourier transform, and continuous wavelet 
transforms. A WER-CNN was developed to comprehensively learn the information of 
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three RGB images and calculate the coordinates of the signal source; (4) The proposed 
WER-CNN is compared with other methods based on root mean square error (RMSE), 
R2, and standard deviation.

The rest of the paper is organized as follows. Section 2 presents the experimental 
setup, including the introduction of the specimen and the AE setup. Section 3 presents 
the proposed source localization method and its implementation procedure. Section 4 
discussed the performance of the proposed method. The conclusions are summarized 
in Section 5.

2. Experimental Setup and Procedures

A large-scale 304H stainless steel plate specimen, as shown in Fig. 1, was 
manufactured for this study. To simulate the actual spent fuel storage canister, the large-
scale specimen has a very similar thickness and length to the actual canister. The 
dimensions of the large-scale steel plate are 5029 x 1524 x 16 mm. In addition to the 
large-scale steel plate, two bolted small steel plates were fabricated and attached to the 
large-scale specimen to simulate the circumstance where the canister is placed on the 
bottom support. A certain torque is applied to the bolt to mimic the pressure from the 
weight of an actual canister. To match the practical situation where an AE sensor could 
only be attached to the bottom support, one AE sensor was placed on one of the bolted 
small steel plates during the entire experiment. This experiment is a preliminary 
verification of the method proposed in this paper in a laboratory environment. 
Experiments performed on actual canisters will be covered in future studies.

Fig. 1. Specimen and experimental setup

The Hsu-Nielsen pencil-lead-break (PLB) is commonly used to generate AE 
signals [37]. PLB signals and the actual SCC signals have some similarities, but the 
difference still exists. The focus of this paper is to preliminarily verify the proposed 
localization method. PLB signals are easy to obtain and easy to reproduce. Therefore, 
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in this paper, Hsu-Nielsen PLB was performed on the large-scale plate to simulate the 
SCC damage occurring on the cylinder. The future work would focus on reducing the 
difference between the PLB and SCC signals using domain adaptation technique.

The pre-marked positions to conduct PLB (green dots) were evenly distributed in 
the area near the right side of the plate. All the green dots and their spacing are presented 
in Fig. 1. The lower-left corner of the large-scale plate is employed as the origin of the 
Cartesian coordinate system. Each green dot is given a coordinate (x, y) with this point 
as the origin. The PLB was repeated 30 times on each green dot throughout the 
experiment. All of the AE signals induced by the PLB were captured by the single AE 
sensor on the small plate and recorded by the AE acquisition system. A scheme of a 
typical AE waveform is presented in Fig. 1. 

Fig. 2. Attenuation curves of three types of AE sensors

The AE sensor and the acquisition system were produced by the MISTRAS Group Inc., 
Princeton Junction, New Jersey. To determine the appropriate AE sensor used in this 
experiment, an attenuation test has been conducted on three types of AE sensors. These 
sensors are the WDI sensor with an operating frequency range of 100-900 kHz, the R6I 
sensor with an operating frequency range of 40-100 kHz, and the R3I sensor with an 
operating frequency range of 10-40 kHz. The steel plate specimen was subjected to 
PLB at distances between 0 and 5000 mm from the sensor. Fig. 2 shows the outcomes. 
The AE sensor and the acquisition system were produced by the MISTRAS Group Inc., 
Princeton Junction, New Jersey. To determine the appropriate AE sensor used in this 
experiment, an attenuation test has been conducted on three types of AE sensors. These 
sensors are the WDI sensor with an operating frequency range of 100-900 kHz, the R6I 
sensor with an operating frequency range of 40-100 kHz, and the R3I sensor with an 
operating frequency range of 10-40 kHz. The steel plate specimen was subjected to 
PLB at distances between 0 and 5000 mm from the sensor. Fig. 2 shows the outcomes. 
The R3I sensor was used in this paper due to its relatively higher sensitivity over long 
distances, even though its operating frequency band is not directly related to the primary 
frequency band of the damage signal in stainless steel stress corrosion cracking, which 
typically falls within the 100-300 kHz range [18]. This is because the characteristics of 
AE signals generated from various locations on the structure are not only exhibited in 
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the primary frequency band. Instead, they also exhibit different reverberation patterns 
due to the reflection of edge waves. The reverberative, and dispersive characteristics of 
AE waveforms are manifested in the low frequency components of the AE signals, 
which can be captured by the R3I sensor. The algorithm presented in this paper is 
designed to extract valuable information regarding the reverberation pattern of the 
acoustic emission signal that has only low frequency band components and  has 
experienced significant propagation losses.The PLB signal generated near one edge of 
the specimen can be well received even if the sensor is mounted on the small plate 
attached to the other edge of the specimen. The AE signals were recorded by a 16-
channel DISP system. The details regarding the AE acquisition parameters are 
presented in Table 1.

Table 1. AE acquisition parameters

Acquisition parameters Value
Hit Definition Time 400 µs
Peak Definition Time 200 µs
Hit Lockout Time 400 µs
Sampling Rate 1 MHz
Threshold 32dB
Pre-trigger Time 256 µs
High Pass Digital Filter 20 kHz
Low Pass Digital Filter 400 kHz

3. Methodology

3.1. Implementation procedure

The damage detection and localization method for spent fuel canisters is developed 
based on single-sensor AE monitoring and a weighted ensemble regression-based 
convolutional neural network (WER-CNN). The original AE signals extracted from the 
acquisition system were one-dimensional time series. This paper employed two 
commonly used methods: short-time Fourier transform (STFT) and continuous wavelet 
transforms (CWT), to convert the one-dimensional time series into RGB images while 
preserving the essential information. In addition to the two methods above, a data fusion 
method named WFE-fusion was proposed to fuse the information from the AE 
waveform, fast Fourier transform (FFT) spectrum, and spectral entropy. The fused 
information was also converted to the RGB images. In total, three different RGB images 
can be obtained from one AE signal. Those images are stored in an image dataset and 
used as the input to the WER-CNN (Details of WER-CNN is introduced in Section 
3.3.4). The final output is the damage source coordinates (x, y).  Fig. 3 shows the 
framework of the proposed source localization method.
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Fig. 3. Implementation procedures

3.2. AE signals pre-processing and data fusion

3.2.1. WFE-fusion

This paper proposes WFE-fusion to integrate information from the AE waveform, 
FFT spectrum, and spectral entropy of each AE signal. The name is the first letters of 
the waveform (W), FFT spectrum (F), and Entropy (E). As mentioned before, the 
original AE signals are one-dimensional time series. The time-domain waveform 
(normalized from 0 to 1) of a typical AE signal is shown in Fig 4a.

Fast Fourier transform (FFT) is a common method for transferring a signal from a 
time-domain waveform to a frequency-domain spectrum [38]. The discrete version of 
Fourier transform is utilized for digital waveforms, which is referred to as Discrete 
Fourier Transform (DFT), and is presented in the following Eq. (1):

𝑋(𝑚) =
𝑁 ― 1

∑
𝑛 = 0

𝑋𝑛𝑒
―

𝑗2𝜋𝑚𝑛
𝑁

(1)

        Where,  is the number of samples.  is a signal in a time domain, and  is 𝑁 𝑋𝑛 𝑋(𝑚)

Fourier transform coefficients for  frequency. FFT is a fast and efficient way of mth

computing the DFT using computers. The FFT spectrum (magnitude normalized) of the 
typical AE signal is presented in Fig. 4b.

Entropy is a thermodynamic concept that represents the property of a system to 
evolve to an internal steady state when it is not subject to external disturbances [39]. 
Information entropy draws on the concept of entropy in thermodynamics, which 
measures the uncertainty of information in signals [40-42]. A high information entropy 
represents a high uncertainty for a signal, and the level of information contained in the 
signal is low. In other words, the more disorderly the signal is (close to white noise), 
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the higher the information entropy is for that signal. When the information entropy of 
a segment in a signal suddenly decreases, it means that the segment contains special 
information. AE signals were converted into power spectral entropy in this study. The 
probability distribution of the power spectrum in a signal can be obtained by Eq. (2):

𝑃(𝑚) =
𝑋(𝑚)2

∑
𝑖𝑋(𝑖)2

(2)

Where,  is Fourier transform coefficients for frequency from Eq. (1).  𝑋(𝑚) mth 𝑃(𝑚)
refers to the probability distribution of the power spectrum for  frequency. The  mth

spectral entropy can be calculated by substituting Eq. (2) into Eq. (3):

𝐸 = ―
𝑁

∑
𝑚 = 1

𝑃(𝑚)log2 𝑃(𝑚)
(3)

The instantaneous spectral entropy can be computed by the following equations:

𝐸(𝑡) = ―
𝑁

∑
𝑚 = 1

𝑃(𝑡,𝑚)log2 𝑃(𝑡,𝑚)
(4)

𝑃(𝑡,𝑚) =
𝑋(𝑡,𝑚)2

∑
𝑓𝑋(𝑡,𝑓)2

(5)

Where,  is the spectral entropy at time t.  is the probability distribution 𝐸(𝑡) 𝑃(𝑡,𝑚)
at time t.  refers to the probability distribution of the power spectrum at time t. 𝑋(𝑡,𝑚)

 is the time-frequency power spectrogram. The instantaneous spectral entropy 𝑋(𝑡,𝑓)
(magnitude normalized) of the typical AE signals is presented in Fig. 4c.

(a) (b) (c)
Fig. 4. Typical AE signal: (a) waveform; (b) FFT spectrum; (c) Spectral entropy

One-dimensional time series 

Gray pixel

Gray pixel
Gray Scale Image

Spectrum Entropy

Waveform

FFT

Gray Scale Image
Data fusion

RGB Image

Fig. 5. Procedures of WFE-fusion

It can be observed that AE waveforms, FFT spectrum, and spectral entropy are all 
individual one-dimensional series. To integrate the information embedded in these 
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three individual series and also to meet the input requirement of the proposed WER-
CNN, the series are fused to an RGB image. Figure. 5 describes the data fusion process. 
For each one-dimensional series, a sliding window (length ) is applied to the series to 𝐿
extract data and convert the numbers into gray pixel bars. The length  can be 𝐿
determined by the square root of the length of the series. The gray pixel bars generated 
by the first window is utilized as the first row of the grayscale image. Then the window 
continues to move backward to produce next few gray pixel bars and eventually forms 
a grayscale image with the size of . As shown in Fig 4, waveform, FFT spectrum, 𝐿 × 𝐿
and spectral entropy are converted to grayscale images, respectively. To facilitate the 
next step of fusion, all grayscale images are reshaped to the same scale of 227 227. ×
By stacking the reshaped grayscale images of waveform, FFT spectrum, and spectral 
entropy, a new RGB image with the size of 227 227 3 can be built. The acquired × ×
image with the size of 227 227 3 is named WFE-fusion image. Fig. 5 illustrates the × ×
WFE-fusion image of a typical AE signal.

3.2.2 Short-time Fourier transform 

Short-time Fourier transform (STFT) is a commonly used method of joint time-
frequency analysis [43]. Through time-frequency analysis, the time and frequency 
domains can be linked together. In brief, STFT uses a time window to derive the 
frequency spectrum at the moment of the time segment. By stacking the frequency 
spectrum of all segments in time order, an STFT spectrogram can be formed. The 
calculating process of STFT can be expressed by Eq. (6):

𝑆𝑇𝐹𝑇(𝑡,𝑓) =
∞

∫
―∞

𝑆(𝑥)𝑊(𝑥 ― 𝑡)𝑒 ―𝑖2𝜋𝑓𝜏𝑑𝑥
(6)

Where,  is the window function,  is the signal to be transformed. The length of 𝑊(𝑡) 𝑆(𝑥)
the window used in this paper is 300. This is determined by a trial-and-error test. In this 
paper, AE signals recorded from the specimen were converted to STFT spectrograms 
and saved as RGB STFT images with the size of 227 227 3.× ×

3.2.3 Continuous wavelet transforms 

Another commonly utilized joint time-frequency analysis method is wavelet 
transformations [44]. One of the wavelet transformations approaches: CWT, is utilized 
in this study. It is able to capture and emphasize the time-frequency features in non-
stationary signals [45]. The CWT process of a signal  can be presented as Eq. (7):𝑠(𝑡)

𝐶𝑊𝑇(𝑎,𝑏) =  
1
|𝑎|

∞

∫
―∞

𝑠(𝑡)𝜓 ∗ (𝑡 ― 𝑏
𝑎 )𝑑𝑡

(7)

Where,  stands for the continuous wavelet coefficients obtained from the signals, 𝐶𝑊𝑇
 is the scale index parameter that controls the scaling of wavelet function and has an 𝑎

inverse relation to frequency,  refers to the translation parameter which controls the    𝑏
time-shifting of wavelets. The wavelet coefficients are generated by moving wavelets 
with different  scale indices across entire signals.  refers to the complex conjugate 𝑎 𝜓 ∗

of mother wavelet function . Morse wavelet [46] is used as the mother wavelet 𝜓
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function to conduct CWT in this study. The Fourier transform of Morse wavelet can be 
expressed by Eq (8):

                                                                                      (8)𝛹𝑝,  𝛾(𝑥) = 𝑈(𝑥)𝛼𝑝,  𝛾𝑥
𝑝2

𝛾 𝑒 ―𝑥𝛾

where  refers to the unit step,  refers to the normalizing constant,  refers 𝑈(𝑥) α𝑝,  𝛾 𝑝2

to the time-bandwidth product.  is the parameter that characterizes the symmetry of   𝛾
the Morse wavelet [47]. In this paper,  was set as 60 and  was set as 3. 𝑝2 𝛾

A scalogram image can be used to express the continuous wavelet coefficients. The 
images of AE waveforms are utilized as an input for the CNN models inside the 
proposed heterogeneous ensemble learning network. A CWT scalogram image can be 
used to express the continuous wavelet coefficients. All the AE signals recorded in this 
paper were converted to CWT scalogram images and saved as RGB images with the 
size of 227×227×3. The CWT RGB images generated by the Morse function have been 
compared with the RGB images generated by the other two wavelet functions 
(analytical Morlet, and Bump functions). The CNN models using the images generated 
by Morse can yield a slightly lower RMSE. Thus, the Morse wavelet function was 
selected as the mother function in this paper.

The AE signal waveforms, the corresponding WFE-fusion images, STFT images, 
and CWT images recorded from three locations on the specimen are shown in Fig. 6. It 
can be observed that waveforms of the AE signals captured from different locations 
show different characteristics. These differences are reflected in the WFE-fusion, STFT, 
and CWT images. 

Fig. 6. WFE-fusion images, STFT images, and CWT images

3.3 Weighted ensemble regression-based convolutional neural network

CNN is a type of deep neural network that can be used to process images [48]. 
Through a feature extractor consisting of convolutional and pooling layers, CNN 
models can extract features from images and discover deep patterns in the dataset. This 
paper proposed a weighted ensemble regression-based convolutional neural network to 
analyze the AE signals and compute the coordinates of the AE sources.
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As introduced in Section 3.2, the AE signals captured by the single AE sensor 
were converted into three image types. In order to make full use of the information from 
WFE-fusion images, STFT images, and CWT images, a weighted ensemble regression-
based convolutional neural network (WER-CNN) was proposed to estimate the 
coordinates (x, y) of the damage source. The structure of the proposed ensemble 
network is presented in Fig. 6. WER-CNN is composed of three branches. The input 
for the first branch is the WFE-fusion image, the input for the second branch is the 
STFT image, and the input for the third branch is the CWT image. The input images 
are divided into training, validation, and testing datasets with a ratio of 3:1:2. In each 
branch, five regression-based CNN are deployed. Previous studies indicated that CNN 
structures like AlexNet do well in analyzing AE signals in applications such as the 
damage identification on railroads [49] and the crack length estimation on metallic 
plates [50]. To obtain a good performance in the localization of AE source, a CNN 
structure with a similar architecture to AlexNet is employed in each branch as the 
regression-based CNN. As shown in Fig. 7, the regression-based CNN has five 
convolution layers (Conv1 to Conv5), three max pooling layers (pool1, pool2, and 
pool5), three FC layers (FC6, FC7, and FC8). The dimension of the last FC layer (FC8)  
is modified to 1×1. A regression layer is implemented after the FC8 layer. The structure 
of the regression-based CNN is shown in Fig. 7. The loss function utilized in the 
regression layer can be expressed as Eq. (12):

𝐿𝑜𝑠𝑠 =  
1
2

𝐻

∑
𝑖 = 1

(𝑦′𝑖 ― 𝑦𝑖)
2

(12)

where  refers to the number of data,  stands for the target output, and  refers to the 𝐻 𝑦′𝑖 𝑦𝑖

prediction of the regression layer.
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Fig. 7. Structure of the proposed WER-CNN

The regression-based CNN computes the coordinates x and y in parallel. In total, 
three branches and fifteen regression-based CNN are included in WER-CNN. The 
bagging aggregating strategy is utilized to assemble the three branches. The advantage 
of using bagging aggregation is that it could effectively reduce the variance and increase 
the accuracy of the prediction results [51]. In WER-CNN, each single regression-based 
CNN works independently and gives its own estimated coordinates. In total, fifteen 
coordinates can be obtained for one AE signal. This paper developed a weighted 
averaging mechanism to combine the acquired fifteen coordinates and derive the final 
coordinates. The weighted averaging mechanism is only implemented for the testing 
dataset. The weighted averaging procedure can be found in Fig. 7. The calculation of 
the final coordinates can be expressed by the following equation:

𝐶𝑓𝑖𝑛𝑎𝑙(𝑥,𝑦) =
5

∑
𝑖 = 1

𝐶𝑖(𝑥,𝑦) ∙ 𝑤1 +
5

∑
𝑗 = 1

𝐶𝑗(𝑥,𝑦) ∙ 𝑤2 +
5

∑
𝑘 = 1

𝐶𝑘(𝑥,𝑦) ∙ 𝑤3

(13)

Where,  refers to the coordinates given by branch 1,  refers to the 𝐶𝑖(𝑥,𝑦) 𝐶𝑗(𝑥,𝑦)
coordinates obtained by branch 2,  stands for the coordinates derived by branch 𝐶𝑘(𝑥,𝑦)
3. The five coordinates obtained from each branch is assigned a weight factor: , , 𝑤1 𝑤2
and , respectively.  represents the final estimated coordinates of the 𝑤3 𝐶𝑓𝑖𝑛𝑎𝑙(𝑥,𝑦)
damage source.

The weighting factors are obtained by considering the performance (RMSE) of 
each branch on the validation dataset. The following equations can be used to obtain 
the weighting factor:
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𝑤𝑏𝑒𝑠𝑡 =
𝑅𝑤𝑜𝑟𝑠𝑡

𝑅𝑏𝑒𝑠𝑡 + 𝑅𝑚𝑒𝑑𝑖𝑢𝑚 + 𝑅𝑤𝑜𝑟𝑠𝑡

(14)

𝑤𝑚𝑒𝑑𝑖𝑢𝑚 =
𝑅𝑚𝑒𝑑𝑖𝑢𝑚

𝑅𝑏𝑒𝑠𝑡 + 𝑅𝑚𝑒𝑑𝑖𝑢𝑚 + 𝑅𝑤𝑜𝑟𝑠𝑡

(15)

𝑤𝑤𝑜𝑟𝑠𝑡 =
𝑅𝑏𝑒𝑠𝑡

𝑅𝑏𝑒𝑠𝑡 + 𝑅𝑚𝑒𝑑𝑖𝑢𝑚 + 𝑅𝑤𝑜𝑟𝑠𝑡

(16)

 refers to the RMSE of the branch with the worst performance on the 𝑅𝑤𝑜𝑟𝑠𝑡
validation dataset, which has the highest value.  refers to the RMSE of the 𝑅𝑚𝑒𝑑𝑖𝑢𝑚
branch with a medium performance. It has the medium value.  refers to the RMSE 𝑅𝑏𝑒𝑠𝑡
of the branch with the best performance, which has the lowest value. Eq. (14) to Eq. 
(16) ensure that the worst-performing branch is assigned the lowest weight and the best 
performing branch is assigned the highest weight. 

This paper also developed an ensemble regression-based convolutional neural 
network (ER-CNN). It is essentially a WER-CNN with the weighted averaging process 
replaced by an average process. ER-CNN was developed to compare with WER-CNN 
and to study the effect of the weighted averaging mechanism. The structure of the ER-
CNN is shown in Fig. 8.

Fig. 8. Structure of ER-CNN

4. Results and Discussion

During the experiment, the PLB on each pre-marked position was repeated 30 
times. In total, 4050 PLB events were detected and recorded by the AE acquisition 
system. The AE signals were transferred to 4050 WFE-fusion images, 4050 STFT 
images, and 4050 CWT images, respectively. In this section, the performance of 
regression-based CNNs for localization on WFE-fused images, STFT images, and 
CWT images are evaluated separately and compared with the performance of the 
proposed WER-CNN using all three types of images. Furthermore, three-fold cross-
validation is conducted to verify the accuracy and effectiveness of the proposed 
approach. The input images are randomly divided into three subsets: A, B, and C. 
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This paper used three metrics, including root mean squared error (RMSE), R-
squared (R2), and Standard deviation, to evaluate the source localization performance. 
RMSE is the square root of the mean of the square of the error between the target and 
the predicted value. It can be expressed as:

𝑅𝑀𝑆𝐸 =  
1
𝑛

𝑛

∑
𝑖 = 1

(𝑦′𝑖 ― 𝑦𝑖)
2

(17)

where  is the number of inputs in the dataset,  stands for the target value, and  𝑛 𝑦′𝑖 𝑦𝑖
refers to the predicted value.

R2 refers to the proportion of the variation in the dependent variable that is 
predictable from the independent variables. It can measure the similarity between the 
targets and the predictions. R2 can be obtained by Eq. (18):

𝑅2 = 1 ―
 ∑𝑛

𝑖 = 1(𝑦′𝑖 ― 𝑦𝑖)
2

∑𝑛
𝑖 = 1(𝑦 ― 𝑦𝑖)2

(18)

where stands for the average of all the target values.𝑦 
Stand deviation (SD) is utilized in this paper to measure the dispersion level of the 

estimated coordinates. It is derived by Eq. (19):

𝑆𝐷 =  
1
𝑛

𝑛

∑
𝑖 = 1

(𝑦′𝑖 ― 𝑦′𝑖)
2

(19)

where  refers to the average of all of the predicted values.𝑦′𝑖

The training, validating, and testing processes for the CNN models were 
conducted on a workstation with a CPU-R9 5900HX, 4.6GHz, 32GB RAM, and a GPU-
RTX3080, 16 GB GDDR6. For all the CNN models in this paper, the gradient descent 
optimization was conducted using the Adaptive moment estimation (Adam) method. 
The minibatch size was 35, the learning rate was 0.0001, and the maximum number of 
epochs was 35. 

4.1 Source localization using single regression-based CNN

The training curves of the regression-based CNN using WER-fusion, STFT, and 
CWT images in terms of RMSE versus epochs are shown in Fig. 8. For both coordinate 
x and coordinate y, the RMSE of all the three curves decreases quickly in the first five 
epochs and then starts to converge. These three curves are highly similar; however, 
when zoomed in at the third epochs, it can be observed that the CNN with CWT images 
converges slightly faster, followed by the CNN with WFE-fusion images and then the 
CNN with STFT images. After convergence (e.g., at the 20th epochs), the RMSE of the 
CNN with CWT images is slightly lower than that of the CNN with WFE-fusion images, 
and the CNN with STFT images has the highest RMSE. The minor difference between 
the three different input images indicates they have similar source localization 
performance.
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(a) (b)
Fig. 8. Training loss of single regression-based CNN: (a) coordinate x; (b) coordinate y

After the training and validation were finished, The CNN models using three 
different types of images were separately tested on the 1350 testing image sets. The 
RMSE of coordinate x is 0.084 meters for STFT images, 0.079 meters for WFE-fusion 
images, and 0.075 meters for CWT images. For coordinate y, the RMSE is 0.058 meters 
for STFT images, 0.053 meters for WFE-fusion images, and 0.043 meters for CWT 
images. The results of RMSE can be found in Table 2. On the specimen with a size of 
5.029×1.524 meters, all the regression-based CNN models using three types of images 
estimated the coordinates with an RMSE below 0.09 meters, indicating they all have 
acceptable performance in AE localization. And the minor difference between the three 
different input images indicates that their source localization performance is not 
significantly different.
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Fig. 9. Actual coordinate x versus estimated coordinate x of single regression-based CNN: 
(a) WFE-fusion images; (b) STFT images; (c) CWT images
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Fig. 10. Actual coordinate y versus estimated coordinate y of single regression-based CNN: 

(a) WFE-fusion images; (b) STFT images; (c) CWT images
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Fig. 9 shows the actual coordinate x (ground truth) in the testing set and the 
estimated coordinate x (prediction). Fig. 10 shows the actual coordinate y and the 
estimated coordinate y. The R2 between the actual and estimated x is 0.9975 for WFE-
fusion images, 0.9971 for STFT images, and 0.9979 for CWT images. The R2 between 
the actual and estimated y is 0.9925 for WFE-fusion images, 0.9894 for STFT images, 
and 0.9941 for CWT images. The results of R2 are presented in Table 2. These results 
emphasize the acceptable performance in AE localization of the regression-based CNN 
models using three different types of images, as the values of R2 between the actual and 
estimated coordinates are very close to 1. When using STFT images, the CNN model 
has the lowest R2, while the R2 of CNN using WFE-fusion and CWT images is relatively 
higher. The results are consistent with the observations of RMSE. 

In the testing set, each PLB point has ten signals to be source localized. The 
dispersion of the estimated coordinates was investigated. The degrees errors and the 
interquartile ranges of the estimated coordinates on all 135 PLB points are presented in 
the box plots shown in Figs. 11 and 12. The interquartile range describes the middle 50% 
of values when ranking from low to high. Overall, the CNN model using STFT had a 
slightly higher interquartile range, while the CNN models using WFE-fusion and CWT 
had a lower interquartile range. The SD of the estimated coordinates was calculated. 
For coordinate x, the SD is 0.061 when using the CNN with WFE-fusion images, 0.063 
when using the CNN with STFT images, and 0.048 when using the CNN with CWT 
images. The SD for coordinate y is 0.043 for WFE-fusion images, 0.045 for STFT 
images, and 0.035 for CWT images. All the results of SD are presented in Table 2.
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Fig. 11. Boxplot of the testing RMSE of the estimated coordinate x of single regression-
based CNN: (a) WFE-fusion images; (b) STFT images; (c) CWT images
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Fig. 12. Boxplot of the testing RMSE of the estimated coordinate y of single regression-
based CNN: (a) WFE-fusion images; (b) STFT images; (c) CWT images

...
...

...

...
...

...

Conv1

Conv3

Conv5

FC7

Last FC

Conv1

Conv3

Conv5

FC7

Last FC

Coordinate: X Coordinate: Y

...
...

...

...
...

...

Conv1

Conv3

Conv5

FC7

Last FC

Conv3

Conv5

FC7

Last FC

Coordinate: X Coordinate: Y

...
...

...

...
...

...

Conv1

Conv3

Conv5

FC7

Last FC

Conv1

Conv3

Conv5

FC7

Last FC

Coordinate: X Coordinate: Y

Conv1

Input WFE-fusion image Input STFT image Input CWT image

Fig. 13. Visualization of feature extraction process

The automated feature extraction processes of the regression-based CNN models 
using three types of input images were shown by visualizing the activation maps in 
convolutional and FC layers. The first, the third, and the fifth convolutional layers, the 
FC7 layer, and the last FC layer are selected to illustrate the activation maps. Each 
activation map is composed of multiple small tiles, which refer to the output of several 
channels during the feature learning process. The light and white pixels in the activation 
map represent positive activations. A lighter color represents a stronger positive 
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activation. On the other hand, negative activation is represented by dark and black 
pixels, and the darker the color, the stronger the negative activation. In Fig. 13, the tiles 
with the strongest channel are magnified and indicated by red boxes. It can be observed 
from the figure that the shallow convolutional layer learns the basic features, such as 
the contours of the frequency components in the image. More complex features related 
to the coordinates of the AE source are learned in deeper layers. And it is obvious that 
the feature maps learned from the three types of images for one AE signal were 
significantly different from each other. However, the outputs of the last FC layer (FC8) 
are very similar. These observations illustrate that the regression-based CNN can 
effectively extract information automatically and eventually learn similar information 
about the coordinates of the AE source from the three images generated from the same 
AE signal.

4. 2. Source localization using WER-CNN

The source localization performance of the proposed WER-CNN is investigated 
in this section. All the fifteen regression-based CNN models in branches 1, 2, and 3 are 
trained and validated individually and form the ensemble network. The source 
localization results on the testing AE signals are also evaluated by the metrics: RMSE, 
R2, and SD. The RMSE of coordinate x generated by WER-CNN is 0.054 meters. The 
RMSE of coordinate y is 0.032 meters. Compared to any of the single regression-based 
CNN models (0.084 for STFT, 0.079 for WFE-fusion, and 0.075 for CWT), a sizable 
RMSE reduction can be observed. The actual coordinates versus the estimated 
coordinates can be discovered in Fig. 14. The R2 between the actual and estimated 
coordinate x computed by WER-CNN is 0.9985. The R2 between the actual and 
estimated coordinate y is 0.9962. There is an improvement in the R2 when compared 
with the single regression CNN models in Section 4.1.
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(b) coordinates y
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Fig. 15. Boxplot of the testing RMSE of the estimated coordinates given by WER-CNN: (a) 
coordinates x; (b) coordinates y

Fig. 15 presents the box plots that show the degree errors and the interquartile 
ranges of the coordinates estimated by WER-CNN. Notably, the WER-CNN model has 
a lower interquartile range than the single regression-based CNN models. The SDs of 
the estimated coordinates are computed to evaluate the dispersion of results. When 
using the WER-CNN, the SD is 0.036 for coordinate x, 0.024 for coordinate y. A 
significant decrease in SD can be observed after using WER-CNN.

Table 2. Performance comparison
Metrics RMSE R2 SD

xCNN
Input: STFT y

0.084
0.058

0.9975
0.9925

0.061
0.043

xCNN
Input: Fusion y

0.079
0.053

0.9971
0.9894

0.063
0.045

xCNN
Input: CWT y

0.075
0.043

0.9979
0.9941

0.048
0.035

xBranch of five CNNs 
Input: STFT y

0.078
0.053

0.9977
0.9930

0.058
0.040

xBranch of five CNNs 
Input: Fusion y

0.072
0.049

0.9974
0.9911

0.059
0.043

xBranch of five CNNs 
Input: CWT y

0.070
0.042

0.9981
0.9943

0.046
0.034

xER-CNN no weighting
y

0.056
0.035

0.9985
0.9962

0.037
0.026

xWER-CNN with weighting
y

0.054
0.032

0.9988
0.9967

0.036
0.024

To study the effect of the weighted averaging mechanism utilized in WER-CNN, 
an ensemble regression-based convolutional neural network (ER-CNN) without the 
weighted averaging mechanism is developed and tested. All the results of ER-CNN and 
WER-CNN, including RMSE, R2, and SD are listed in Table 2. The performance of 
WER-CNN using the weighted averaging mechanism is better than that of ER-CNN 
without using mechanism. This proves the effectiveness of the weighted averaging 
mechanism. 
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The localization performances of the branches ( five regression-based CNN models 
using one type of image) were also studied. The coordinates provided by the five CNN 
models in one branch were averaged to derive the eventual coordinates. The localization 
efficiencies were also evaluated by RMSE, R2, and SD. Results can be found in Table 
2. It can be observed that averaging the localization results using one type of image can 
improve the localization performance over the single CNN to a certain extent. While 
The WER-CNN utilized in this paper can improve the localization performance more 
significantly by comprehensively considering three different types of images.

Fig. 16. Visualization of the actual and estimated coordinates on the specimen

To better visualize the performance of AE source localization, the estimated 
coordinates of the AE source and the actual coordinates are compared and illustrated in 
Fig. 16. The blue dots represent the actual locations of PLB, and the red dots stand for 
the estimated locations. It can be seen that the regression-based CNN models with 
different images and the WER-CNN proposed in this paper that comprehensively uses 
all images can both estimate the coordinates of AE sources. However, there are 
significant differences in the distance between the obtained estimated coordinates and 
the actual coordinates, as well as in the dispersion of the estimated coordinates. The 
figure shows that the single regression-based CNN using STFT images has the highest 
discreteness, followed by the CNN models using CWT images and WFE-fusion images, 
and the proposed WER-CNN has the lowest discreteness compared to the three single 
regression-based CNN models. This observation is consistent with the previous 
findings of SD (shown in Table 2). One of the 135 PLB points is zoomed in to show 
more detail between the actual and estimated coordinates. This is intended to give a 
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more intuitive view of the improvement of source localization on this point brought by 
the proposed method. The coordinates obtained by the single regression-based CNN 
models are scattered around the actual coordinates to a certain extent, while the 
coordinates estimated by WER-CNN are more closely clustered around the actual 
coordinates. In addition, it can also be seen from the figure that the coordinates given 
by WER-CNN are closer to the actual coordinates compared with other single 
regression-based CNN models. This finding is also aligned with previous RMSE 
observations.

The paper also compared the proposed WER-CNN with an existing location method 
with single AE sensor: localization using stacked denoising autoencoders (SDAE) [36]. 
The input of the SDAE was the AE waveforms adding gaussian white noise with 15 
signal power. The SDAE used in the comparison has two denoising autoencoders. The 
first denoising autoencoder has a hidden size of 100, and the second one has a hidden 
size of 50. The training/validation/testing ratio was kept the same with WER-CNN. The 
RMSE of SDAE, the three single-CNN models using different input, and WER-CNN 
are presented in Table 3. The single-CNN models and WER-CNN have lower RMSE 
than SDAE. The difference in the performance of SDAE and the methods in this paper 
may be due to the difference in the ability of feature extraction. This founding 
demonstrated the advance of the proposed method in this paper.

Table 3. RMSE of the proposed and the existing method
Models RMSE of x RMSE of y
SDAE
CNN using STFT
CNN using WFE-fusion
CNN using CWT
WER-CNN

0.097
0.084
0.079
0.075
0.054

0.069
0.058
0.053
0.043
0.032

4. 3. Three-fold cross-validation

The model evaluation results presented above are based on a specific 
training/testing division. It is unknown whether the results of the model are related to 
the way in which the training and testing sets are divided. To address this concern, 
three-fold cross-validation, as shown in Fig. 17, was conducted.

Fig. 17. Three-fold cross-validation
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The experimentally collected AE signals were divided into three mutually 
exclusive subsets of equal size, namely A, B, and C. In the first iteration, the signals in 
A and B are selected as the training and validation sets, and the signals in C are used as 
the testing set. In the second iteration, the signals in B are employed as the testing set, 
and the remaining two subsets are used as the training and validation sets. In the third 
iteration, the signals in A are used as the testing set, and the other two subsets are used 
as the training and validation sets. After the three iterations are completed, all the 
RMSE, R2, and SD obtained from the three iterations are averaged and used to evaluate 
the performance of source localization. In this way, all signals are involved in the 
training and testing, which allows the quality of the model to be evaluated effectively 
while also avoiding overfitting and underfitting. The performances of all the models in 
this paper (single regression-based CNN using different images, ER-CNN, and WER-
CNN) are examined by the three-fold cross-validation. Details are listed in Tables 4, 5, 
and 6.

Table 4. RMSE (meters) of three-fold cross-validation
Coordinates Train/

Testing
CNN

Input: STFT
CNN

Input: Fusion
CNN

Input: CWT
ER-CNN 
no weight

WER-CNN 
with weight

(A, B), C 0.084 0.079 0.075 0.056 0.054
(A, C), B 0.088 0.082 0.078 0.061 0.055
(B, C), A 0.085 0.079 0.072 0.057 0.054

Coordinate 
X

Average 0.086 0.080 0.075 0.058 0.054
(A, B), C 0.058 0.053 0.043 0.035 0.032
(A, C), B 0.057 0.052 0.043 0.033 0.029
(B, C), A 0.057 0.054 0.045 0.035 0.031

Coordinate 
Y

Average 0.057 0.053 0.044 0.034 0.031

Table 5. R2 of three-fold cross-validation
Coordinates Train/

Testing
CNN

Input: STFT
CNN

Input: Fusion
CNN

Input: CWT
ER-CNN 
no weight

WER-CNN 
with weight

(A, B), C 0.9975 0.9971 0.9979 0.9985 0.9988
(A, C), B 0.9970 0.9966 0.9971 0.9981 0.9985
(B, C), A 0.9974 0.9960 0.9978 0.9983 0.9986

Coordinate 
X

Average 0.9973 0.9966 0.9979 0.9983 0.9986
(A, B), C 0.9925 0.9894 0.9941 0.9962 0.9967
(A, C), B 0.9914 0.9901 0.9932 0.9962 0.9968
(B, C), A 0.9914 0.9902 0.9934 0.9960 0.9964

Coordinate 
Y

Average 0.9918 0.9899 0.9935 0.9961 0.9966

Table 6. Standard deviation (meters) of three-fold cross-validation
Coordinates Train/

Testing
CNN

Input: STFT
CNN

Input: Fusion
CNN

Input: CWT
ER-CNN 
no weight

WER-CNN 
with weight

(A, B), C 0.061 0.063 0.048 0.037 0.036
(A, C), B 0.064 0.066 0.053 0.038 0.037
(B, C), A 0.061 0.067 0.049 0.038 0.037

Coordinate 
X

Average 0.062 0.065 0.050 0.038 0.037
(A, B), C 0.042 0.045 0.035 0.026 0.024
(A, C), B 0.041 0.044 0.034 0.025 0.024
(B, C), A 0.042 0.044 0.036 0.026 0.024

Coordinate 
Y

Average 0.042 0.044 0.035 0.026 0.024
The RMSE, R2, and SD obtained for all three iterations of the models in this paper 

are stable and close to the average value. Furthermore, the proposed WER-CNN model 
shows a performance that outperforms both single regression-based CNN and ER-CNN 



24

in all three iterations. These indicate that the models in this paper are stable, and the 
source localization performance does not vary with the division of training and testing 
set.

4. 4. Computing time

Table 6 compares and presents the computational times of the proposed WER-CNN 
and the single CNN models utilizing the three types of inputs. The testing time in the 
table is the amount of time the model takes to localize a single signal in the test dataset. 
The findings showed that the training duration of WER-CNN (12033.6 s) is longer than 
those of single CNN  models. The CNN utilizing STFT images has the shortest training 
time of the three single CNN models, whereas the CNN using CWT images has the 
longest. In the field application, Since the models will be trained offline, training time 
would not be a major concern. The trained model would be used to perform source 
localization in the field, therefore testing time would be the primary concern. According 
to Table 7, the trained models can estimate the coordinates very quickly. All trained 
models can complete the estimation in less than one second. Indicating that the models 
can be appropriate for field SHM.

Table 7. Summary of computing times

Model Training time 
(s) Testing time (s)

WER-CNN  12033.6 0.77
CNN, Input: WFE-
fusion

800.9 0.05

CNN, Input: STFT 789.5 0.05
CNN, Input: CWT 819.1 0.06

5. Conclusions

This paper describes an approach to detect damage in stainless steel spent fuel 
storage canisters through AE monitoring and localizing the damage with only one AE 
sensor attached. A weighted ensemble regression-based CNN, which consists of 
multiple single regression-based CNN models, was proposed to analyze the AE signals 
from one sensor and derive the coordinates of the damage source. Three types of input 
images, including the WFE-fusion images, STFT images, and CWT images, were 
created based on AE signals. To evaluate the effectiveness of the proposed method, a 
large-scale 304 stainless steel specimen, which has a similar length and thickness to the 
actual canister, was used as an experimental specimen to collect AE signals and validate 
the proposed approach. Three metrics: RMSE, R2, and standard deviation, were 
employed to quantify the performance of source localization. In addition, three-fold 
cross-validation was conducted to eliminate the influence brought by overfitting and 
underfitting, as well as to evaluate the effectiveness of the method more 
comprehensively. The main conclusions are summarized as follows:

 The source localization performances of the single regression-based CNN models 
were tested by respectively using WFE-fusion images, STFT images, and CWT 
images as the input. Results suggest that the single regression-based CNN model 
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using STFT has the relevant worse performance in terms of RMSE, R2, and 
standard deviation. Concurrently the model using CWT images has the best 
performance.

 The source localization performance of the proposed WER-CNN was investigated. 
Results indicate that the weighted ensemble model shows significant improvement 
in RMSE, R2, and standard deviation over the single regression-based model.

 The effect of the weighted average mechanism used in the WER-CNN was studied. 
By removing the mechanism, a decrease in the source localization performance can 
be observed in the ER-CNN model, which indicates the effectiveness of the 
weighted averaging mechanism.

 The results of three-fold cross-validation imply that both the single regression-
based CNN models using three types of input images and the ensemble regression-
based CNN models using all images are stable and do not vary with the division of 
training and testing set.

One of the limitations of the current study is that the proposed approach would only 
work for localizing signals on one plate-like steel specimen. To locate realistic SCC 
damage in future practical applications, the proposed localization method should be 
improved to adapt the actual canisters. And more AE signals collected from a number 
of different storage canisters should be included in the training data set to increase the 
generalization performance of the localization method. Only using one sensor to 
preliminarily verify the proposed method on a plate-like structure is also a limitation. 
For a plate-like structure, using only one sensor can yield good localization results. 
However, for a cylindrical structure such as the actual canister, at least two AE sensors 
may be required to achieve the same level of localization performance. Future research 
should further update the localization approach using two sensors and validate the 
approach on the actual spent fuel storage canisters. Another limitation may be that the 
uncertainty of the damage signal due to damage size, frequency dispersion, and etc. is 
not taken into consideration. The PLB signals may be similar which could also lead to 
generalization problems. It is recommended for the future study to do the following: (1) 
use different pinch angles for PLB; (2) add signals generated by the AE signal generator 
to the dataset; (3) add numerical simulated signals dataset.

Acknowledgment

This research was partially supported by Electric Power Research Institute (EPRI) 
under project number 1-108781, and the U.S Department of Energy-Nuclear Energy 
University Program (NEUP) under the contract DE-NE0008544. The views and 
opinions of the authors expressed herein do not necessarily state or reflect the opinions 
of the funding agencies.

Data availability

The raw/processed data required to reproduce these findings can be made available 
upon a reasonable request and with the written permission of the sponsor.



26

References

[1] A. Macfarlane, 2001. Interim storage of spent fuel in the United States, Annual 
review of energy and the environment, 26, 201-235. 
https://doi.org/10.1146/annurev.energy.26.1.201.

[2] R. Alvarez, J. Beyea, K. Janberg, J. Kang, E. Lyman, A. Macfarlane, G. 
Thompson, F.N. von Hippel, 2003. Reducing the hazards from stored spent 
power-reactor fuel in the United States, Science and Global Security, 11, 1-51. 
https://doi.org/10.1080/08929880309006.

[3] F. Von Hippel, 2007, Managing spent fuel in the United States: The illogic of 
reprocessing, JSTOR.

[4] EPRI, 2016, Investigation of Acoustic Emission Technologies for Monitoring 
Inaccessible Regions of Dry Fuel Storage Systems, EPRI, Palo Alto, CA.

[5] T.S. Mintz, L. Miller, Y.-M. Pan, X. He, R. Pabalan, L. Caseres, G. Oberson, 
D. Dunn, 2013, Coastal Salt Effects on the Stress Corrosion Cracking of Type 
304 Stainless Steel, OnePetro.

[6] A.B. Goumeidane, N. Nacereddine, M. Khamadja, 2015. Computer aided weld 
defect delineation using statistical parametric active contours in radiographic 
inspection, Journal of X-ray Science and Technology, 23, 289-310. 
https://doi.org/10.3233/XST-150488.

[7] R. Chen, K.T. Tran, H.M. La, T. Rawlinson, K. Dinh, 2022. Detection of 
delamination and rebar debonding in concrete structures with ultrasonic SH-
waveform tomography, Automation in Construction, 133, 104004. 
https://doi.org/10.1016/j.autcon.2021.104004.

[8] L. K C, A. Ross, L. Ai, A. Henderson, E. Elbatanouny, M. Bayat, P. Ziehl, 2023. 
Determination of vehicle loads on bridges by acoustic emission and an 
improved ensemble artificial neural network, Construction and Building 
Materials, 364, 129844. https://doi.org/10.1016/j.conbuildmat.2022.129844.

[9] L. Ai, V. Soltangharaei, R. Anay, M.J. van Tooren, P. Ziehl, 2020, Data-driven 
source localization of impact on aircraft control surfaces, IEEE, 1-10. 
https://doi.org/10.1109/AERO47225.2020.9172742.

[10] L. Ai, B. Greer, J. Hill, V. Soltangharaei, R.A.P. Ziehl, 2019, Finite element 
modeling of acoustic emission in dry cask storage systems generated by cosine 
bell sources, AIP Publishing LLC, 130001. https://doi.org/10.1063/1.5099851.

[11] D. Han, Y. Zhao, Y. Pan, G. Liu, T. Yang, 2020. Heating process monitoring 
and evaluation of hot in-place recycling of asphalt pavement using infrared 
thermal imaging, Automation in Construction, 111, 103055. 
https://doi.org/10.1016/j.autcon.2019.103055.

[12] K.R. Ramakrishnan, S. Corn, N. Le Moigne, P. Ienny, P. Slangen, 2021. 
Experimental assessment of low velocity impact damage in flax fabrics 
reinforced biocomposites by coupled high-speed imaging and DIC analysis, 
Composites Part A: Applied Science and Manufacturing, 140, 106137. 
https://doi.org/10.1016/j.compositesa.2020.106137.

[13] V. Soltangharaei, R. Anay, L. Ai, E.R. Giannini, J. Zhu, P. Ziehl, 2020. 
Temporal evaluation of ASR cracking in concrete specimens using acoustic 



27

emission, Journal of Materials in Civil Engineering, 32, 04020285. 
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003353.

[14] L. Ai, V. Soltangharaei, P. Ziehl, 2022. Developing a heterogeneous ensemble 
learning framework to evaluate Alkali-silica reaction damage in concrete using 
acoustic emission signals, Mechanical Systems and Signal Processing, 172, 
108981. https://doi.org/10.1016/j.ymssp.2022.108981.

[15] L. Ai, V. Soltangharaei, P. Ziehl, 2021. Evaluation of ASR in concrete using 
acoustic emission and deep learning, Nuclear Engineering and Design, 380, 
111328. https://doi.org/10.1016/j.nucengdes.2021.111328.

[16] C.B. Scruby, 1987. An introduction to acoustic emission, Journal of Physics E: 
Scientific Instruments, 20, 946. https://doi.org/10.1088/0022-3735/20/8/001.

[17] K.M. Holford, M.J. Eaton, J.J. Hensman, R. Pullin, S.L. Evans, N. Dervilis, K. 
Worden, 2017. A new methodology for automating acoustic emission detection 
of metallic fatigue fractures in highly demanding aerospace environments: An 
overview, Progress in Aerospace Sciences, 90, 1-11. 
https://doi.org/10.1016/j.paerosci.2016.11.003.

[18] V. Soltangharaei, J. Hill, L. Ai, R. Anay, B. Greer, M. Bayat, P. Ziehl, 2020. 
Acoustic emission technique to identify stress corrosion cracking damage, 
Structural Engineering and Mechanics, 75, 723-736. 
https://doi.org/10.12989/sem.2020.75.6.723.

[19] M. Khyzhniak, M. Malanowski, 2021, Localization of an Acoustic Emission 
Source Based on Time Difference of Arrival, IEEE, 117-121. 
https://doi.org/10.1109/SPSympo51155.2020.9593909.

[20] M.I. Jordan, T.M. Mitchell, 2015. Machine learning: Trends, perspectives, and 
prospects, Science, 349, 255-260. https://doi.org/10.1126/science.aaa841.

[21] I. Goodfellow, Y. Bengio, A. Courville, 2016. Machine learning basics, Deep 
learning, 1, 98-164.

[22] A. Mohammadi, J.H. Gull, R. Taghinezhad, A. Azizinamini, 2014. Assessment 
and evaluation of timber piles used in Nebraska for retrofit and rating.

[23] Y. Tang, Y. Guo, X. Chen, Z. Wang, Y. Wei, 2022. Acoustic emission 
characteristics of concrete cylinders reinforced with steel-fiber-reinforced 
composite bars under uniaxial compression, Journal of Building Engineering, 
59, 105074. https://doi.org/10.1016/j.jobe.2022.105074.

[24] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, 2016, Deep learning, MIT 
press Cambridge.

[25] Q. Zhang, K. Barri, S.K. Babanajad, A.H. Alavi, 2020. Real-time detection of 
cracks on concrete bridge decks using deep learning in the frequency domain, 
Engineering. https://doi.org/10.1016/j.eng.2020.07.026.

[26] J. Dahlberg, B. Phares, J. Bigelow, F.W. Klaiber, 2012, Timber abutment piling 
and back wall rehabilitation and repair.

[27] C.U. Grosse, M. Ohtsu, D.G. Aggelis, T. Shiotani, 2021, Acoustic emission 
testing: Basics for research–applications in engineering, Springer Nature.

[28] S.H. Jambukia, V.K. Dabhi, H.B. Prajapati, 2015, Classification of ECG signals 
using machine learning techniques: A survey, IEEE, 714-721. 



28

https://doi.org/10.1109/ICACEA.2015.7164783.
[29] D.G. Aggelis, T. Shiotani, in, Acoustic Emission Testing, Springer, 2022, pp. 

45-71.
[30] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, A.K. Nandi, 2020. Applications of 

machine learning to machine fault diagnosis: A review and roadmap, 
Mechanical Systems and Signal Processing, 138, 106587. 
https://doi.org/10.1016/j.ymssp.2019.106587.

[31] T. Suzuki, S. Nishimura, Y. Shimamoto, T. Shiotani, M. Ohtsu, 2020. Damage 
estimation of concrete canal due to freeze and thawed effects by acoustic 
emission and X-ray CT methods, Construction and Building Materials, 245, 
118343. https://doi.org/10.1016/j.conbuildmat.2020.118343.

[32] M.A. Meier, Z.E. Ross, A. Ramachandran, A. Balakrishna, S. Nair, P. Kundzicz, 
Z. Li, J. Andrews, E. Hauksson, Y. Yue, 2019. Reliable real‐time seismic 
signal/noise discrimination with machine learning, Journal of Geophysical 
Research: Solid Earth, 124, 788-800. https://doi.org/10.1029/2018JB016661.

[33] A. Ebrahimkhanlou, B. Dubuc, S. Salamone, 2019. A generalizable deep 
learning framework for localizing and characterizing acoustic emission sources 
in riveted metallic panels, Mechanical Systems and Signal Processing, 130, 
248-272. https://doi.org/10.1016/j.ymssp.2019.04.050.

[34] L. Ai, V. Soltangharaei, M. Bayat, M. van Tooren, P. Ziehl, 2021. Detection of 
impact on aircraft composite structure using machine learning techniques, 
Measurement Science and Technology, 32, 084013. 
https://doi.org/10.1088/1361-6501/abe790.

[35] L. Ai, V. Soltangharaei, M. Bayat, B. Greer, P. Ziehl, 2021. Source localization 
on large-scale canisters for used nuclear fuel storage using optimal number of 
acoustic emission sensors, Nuclear Engineering and Design, 375, 111097. 
https://doi.org/10.1016/j.nucengdes.2021.111097.

[36] L. Yang, F. Xu, 2020. A novel acoustic emission sources localization and 
identification method in metallic plates based on stacked denoising 
autoencoders, IEEE Access, 8, 141123-141142. 
https://doi.org/10.1109/ACCESS.2020.3012521.

[37] T. Boczar, M. Lorenc, 2004. Determining the repeatability of acoustic emission 
generated by the Hsu-Nielsen calibrating source, Molecular and quantum 
Acoustics, 25, 177-192.

[38] H.J. Nussbaumer, in, Fast Fourier Transform and Convolution Algorithms, 
Springer, 1981, pp. 80-111.

[39] A. Wehrl, 1978. General properties of entropy, Reviews of Modern Physics, 50, 
221. https://doi.org/10.1103/RevModPhys.50.221

[40] C.E. Shannon, 2001. A mathematical theory of communication, ACM 
SIGMOBILE mobile computing and communications review, 5, 3-55.

[41] C.E. Shannon, 1948. A mathematical theory of communication, The Bell 
system technical journal, 27, 379-423. https://doi.org/10.1002/j.1538-
7305.1948.tb01338.x.

[42] M. Mousavi, D. Holloway, J. Olivier, A.H. Alavi, A.H. Gandomi, 2019. A 



29

Shannon entropy approach for structural damage identification based on self-
powered sensor data, Engineering Structures, 200, 109619. 
https://doi.org/10.1016/j.engstruct.2019.109619.

[43] L. Durak, O. Arikan, 2003. Short-time Fourier transform: two fundamental 
properties and an optimal implementation, IEEE Transactions on Signal 
Processing, 51, 1231-1242. https://doi.org/10.1109/TSP.2003.810293.

[44] W. Zhou, Z. Feng, Y. Xu, X. Wang, H. Lv, 2022. Empirical Fourier 
decomposition: An accurate signal decomposition method for nonlinear and 
non-stationary time series analysis, Mechanical Systems and Signal Processing, 
163, 108155. https://doi.org/10.1016/j.ymssp.2021.108155.

[45] B. Shi, M. Cao, Z. Wang, W. Ostachowicz, 2022. A directional continuous 
wavelet transform of mode shape for line-type damage detection in plate-type 
structures, Mechanical Systems and Signal Processing, 167, 108510. 
https://doi.org/10.1016/j.ymssp.2021.108510.

[46] J.M. Lilly, S.C. Olhede, 2012. Generalized Morse wavelets as a superfamily of 
analytic wavelets, IEEE Transactions on Signal Processing, 60, 6036-6041. 
https://doi.org/10.1109/TSP.2012.2210890.

[47] J.M. Lilly, S.C. Olhede, 2008. Higher-order properties of analytic wavelets, 
IEEE Transactions on Signal Processing, 57, 146-160. 
https://doi.org/10.1109/TSP.2008.2007607.

[48] A. Krizhevsky, I. Sutskever, G.E. Hinton, 2012, Imagenet classification with 
deep convolutional neural networks, 1097-1105. 
https://doi.org/10.1145/3065386.

[49] D. Li, Y. Wang, W.-J. Yan, W.-X. Ren, 2020. Acoustic emission wave 
classification for rail crack monitoring based on synchrosqueezed wavelet 
transform and multi-branch convolutional neural network, Structural Health 
Monitoring, 1475921720922797. https://doi.org/10.1177/1475921720922797.

[50] J.C. Garrett, H. Mei, V. Giurgiutiu, 2022. An artificial intelligence approach to 
fatigue crack length estimation from acoustic emission waves in thin metallic 
plates, Applied Sciences, 12, 1372. https://doi.org/10.3390/app12031372.

[51] N.C. Oza, S.J. Russell, 2001, Online bagging and boosting, PMLR, 229-236.



30

Highlights:
 A data fusion method is presented, which integrates AE waveform, FFT spectrum, 
and spectral entropy.
 A weighted ensemble regression-based CNN was proposed to estimate the 
coordinates of damage.
 Fusion data, CWT, and STFT coefficients were used as input data.
 The proposed model estimates the coordinates of damages with high performance.
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