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A B S T R A C T   

Bridges are significant hubs in the U.S. national economy, facilitating the movement of goods and vehicles. The 
condition of bridges in the state of South Carolina is currently under scrutiny, especially in rural areas where 
most of the bridges were designed using outdated standards from the 1950 s. The weight of vehicles in recent 
years has increased significantly compared to the past. This has created an overloading problem. In addition, 
bridge performance decreases during their service life due to vehicle loads, material deterioration, and envi-
ronmental erosion. Therefore, it is necessary to inspect and conduct load ratings on bridges to determine whether 
the bridges need to be posted. Due to recent advances in sensing technology and data analysis methods, 
nondestructive methods such as acoustic emission (AE) have been widely utilized in monitoring damage to the 
bridges. The objective of this paper is to explore the possibility of using AE sensors concurrently to determine 
vehicle loads on the bridges while monitoring bridge damage. A load determination method leveraging an 
improved ensemble artificial neural network (ANN) is proposed to analyze the AE data and estimate the load of 
the vehicle. The significance of this vehicle load determination method is that it has the potential to be paired 
with an AE damage monitoring system rather than using other instrumentation such as a weigh-in-motion (WIM) 
system. The proposed method has been tested on an experimental bridge component. The results suggest that the 
proposed model has an accuracy above 70 % in estimating the vehicle loads on the precast reinforced concrete 
(RC) flat slabs.   

1. Introduction 

South Carolina depends heavily on its numerous bridges for com-
munity connectedness, trade, and transportation. The state has 9,410 
bridges in its inventory, 90 % of which are managed by the South Car-
olina Department of Transportation (SCDOT) [1]. Most of these 
bridges—roughly 75 %—are situated in rural regions. According to the 
SCDOT, 3,622 bridges were designed using either H-10 or H-15 loading 
criteria. The current design standard is called HL-93 and is significantly 
larger than the H-10 and H-15 loading criteria used in the 1950 s [2]. 
The average age of the bridges in South Carolina is 38.6 years, very close 
to the 50-year service life and 6.8 % of them are load-posted bridges. 
Weigh-in-motion (WIM) system are placed at 10 sites to restrict over-
weight vehicles from passing through these bridges. Moreover, with 
over 30 % of its bridges under-designed and suffering from decades of 

service deterioration, the SCDOT has made it a priority to evaluate these 
bridges and determine whether they need to be repaired or replaced. 

Weigh-in-motion system consists of sensor and data analysis equip-
ment. The system is employed to measure the weight of the vehicles in 
order to limit the number of overweight vehicles passing through the 
bridge without disrupting the flow of traffic [3]. Heavy, overweight 
vehicles cause overloading on the bridge, accelerating the wear of the 
road pavement and increasing the cost of repair [4,5]. Similarly, a large 
number of accidents are caused by overloaded vehicles due to their 
instability. Hence, WIM system is employed for cost optimization and to 
improve road safety. 

Piezoelectric sensors, load cells, and bending plate sensors are the 
most commonly used commercially available WIM sensors [6,7]. But 
piezoelectric sensors are only suitable for the collection of traffic data 
and cannot be used to measure the weight, WIM systems with load cells 
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have large cross sections, and bending plate sensors are heavy and 
bulky. Moreover, the WIM sensors must be embedded in the pavement, 
which requires lane closure from several days to as long as a week. 
Therefore, it is necessary to investigate compact, lightweight, and reli-
able sensors to measure the load of the vehicles that can be quickly and 
readily placed in the field. This paper aims to explore the possibility of 
using acoustic emission (AE) system employing the AE sensors to 
determine vehicle loads while monitoring damages on the bridge. 

With the development of sensor technology, various sensors have 
been used in structural health monitoring of structures [8,9]. Among 
them, AE sensors are popularly used because of their simplicity in 
application, high damage sensitivity, and ability to continuously 
monitor the response of civil infrastructures [10–14]. The application of 
AE sensors aids in automation and saves time and money on inspections 
without compromising the functionality of the structures [15,16]. 

In the AE system, AE sensors are used to collect AE data from the 
structures which are processed to obtain AE parameters such as ampli-
tude, frequency, rise time, and AE energy. AE parameters are analyzed 
to evaluate the damage in the structure, including the detection of the 
cracks, location of the crack, type of the crack, and corrosion [17–20]. 
The performance of externally reinforced concrete beams was investi-
gated using acoustic emission [21]. Average frequency (ratio of counts 
and duration) and rise time ratio (ratio of rise time and maximum 
amplitude) were used to differentiate the load at the crack initiation and 
characterize different damage mechanisms. Vandecruys et al. [22] 
investigated the progression of crack and location of corrosion damage 
in four RC beams using AE technique. AE events were analyzed which 
gave an indication of initiation of the crack and location of corrosion 
zone. Zhou et al. [23] performed static experiment on three different RC 
composite slabs. AE parameters: duration time, rise time, and energy, 
were used to analyze the characteristics of the damage, and the relation 
between the AE parameters and the load carrying capacity of the slab 
was investigated. The AE parameters were found to be directly pro-
portional to the load resisting capacity of the RC slabs. Damage in the 
slabs were quantified using AE intensity analysis. Experiments were 
conducted on reinforced concrete (RC) beams, employing AE to classify 
shear and tensile cracks based on the statistical analysis of AE parame-
ters; rise time ratio, and average frequency [24]. Elbatanouny et al. [25] 
investigated the monitoring abilities of AE on eight prestressed concrete 
T-beams subjected to cyclic load testing. Damages to the beams were 
quantified using amplitude and signal strength. Prem et al. [26] attached 
AE sensors to the damaged beams that were strengthened with ultra- 
high-performance concrete and tested them until failure. Through 
analytical monitoring of acoustic signals and acoustic emission inter-
pretation of rise time ratio and average frequency, damage mechanisms 
were divided into five zones, and AE data was used to classify the type of 
the crack, shear or tensile, formed in the beams. 

Even though a large number of AE parameters are collected, only a 
few of these parameters, such as amplitude, rise time, and AE energy, are 
used in statistical analysis for health monitoring of structures. When the 
analysis is based on a single parameter, loss of information is encoun-
tered due to the presence of noise data, resulting in a failure to provide 
an accurate evaluation of cracks and overall damage in the structure 
[27,28]. Multiple AE parameters should be simultaneously accounted to 
overcome the limitations of traditional analysis method [29]. Due to 
recent advances in data analysis methods, neural networks are 
commonly used to simultaneously interpret a large number of parame-
ters in order to reach a strategic decision [30,31]. 

Artificial neural network (ANN) has been used to analyze AE data to 
carry out health monitoring of composite structures [32,33], railroads 
[34,35], and early warning systems in aeronautical engineering [36,37]. 
Selecting multiple AE parameters were found to increase the efficiency 
of the neural network significantly [38]. An indoor experiment was 
designed to investigate the relationship between eight AE signal pa-
rameters, loads, and cracks in prestressed beams [39]. A Deep Neural 
Network model was utilized to classify the structural damage. The 

findings were applied to two on-site bridges and the authors were able to 
detect certain problem areas based on the acoustic emission data. Source 
localization of impacts on an aircraft component into three zones was 
investigated by analyzing 15 features using an ANN [40]. Hassan et al. 
[41] reviewed the literature surrounding four different AI methods for 
the classification of AE data, including ANN, fuzzy logic, genetic algo-
rithms, and support vector machines. ANN was found to be the most 
popular method due to its excellent ability to learn, extrapolate and 
recognize pattern to classify the input AE data effectively and efficiently. 
The powerful computational ability has increased the application of the 
ANN for monitoring the damage in structures [42]. However, there are 
limitations of using a single ANN, such as classifying datasets with 
random mistakes and networks with inadequate data for training. These 
can be eliminated by creating an ensemble ANN [43,44]. An ensemble 
ANN is a technique of combining multiple different ANN models into a 
classification algorithm to improve the performance of the ANN. 
Ensemble ANNs performed better at classification than the monolithic 
ANNs [45–49]. Li et al. [50] presented a method to identify defects and 
damage severity in a beam by comparing the frequency response func-
tions of intact and damages structures using ANN. An ensemble ANN 
was implemented in the study to solve the issue of training convergence 
due to large data size. An ensemble ANN produced the most accurate 
result in predicting the location of defects and their severity in the 
experimental beam compared to the individual ANN. 

The paper aims to explore the possibility of using small, lightweight, 
and easily applicable AE sensors in place of WIM systems to determine 
vehicle loads on bridges while simultaneously monitoring the bridge 
damage. The authors are currently not aware of any published work that 
uses AE to determine the vehicle loads. ANN has been implemented in 
the study to interpret a large number of AE parameters simultaneously 
to reach a strategic decision. Furthermore, an ensemble ANN is created 
to improve the performance of a single ANN and eliminate its inability to 
classify datasets with insufficient training data. The key contribution of 
this study is to create a load determination method using an ensemble 
ANN, to examine the AE data collected from the AE sensors to determine 
the vehicle loads in the bridges. The rest of the paper is organized as 
follows. Section 2 presents the experimental setup. Section 3 provides 
the information on analysis procedures. Section 4 is the results and 
discussion. The conclusions are summarized in Section 5. 

2. Experimental setup 

2.1. Test specimens 

Flexural tests were conducted on two precast RC flat slabs provided 
by the SCDOT to simulate the vehicle loads passing over the bridge. The 
slabs were originally a portion of a bridge for a minimum of 30 years and 
later stored in an SCDOT facility. The slabs were 15 feet long, 8.25 in. 
thick and 5.5 feet wide (Fig. 1). Typical reinforcement details for the 
slabs consist of No. 7 bars at 6 in. on center longitudinally and No. 4 bars 
at 12 in. on center transversely (Fig. 2). The compressive strength of 
concrete and the yield strength of steel were 4,000 psi and 60,000 psi, 
respectively. 

2.2. Test setup 

Two 15-foot simply supported precast RC flat slabs were subjected to 
a four-point bending test [51] in the lab at the University of South 
Carolina (U of SC). To reduce friction at the supports during the appli-
cation of the load, the slabs were placed on 9 in. bearing pads above the 
support. The clear span of the slab is 13.5 feet. The test numbering 
scheme, along with a brief description of the slabs, are presented in 
Table 1. 

A hydraulic actuator was used to apply the load and a load cell was 
used to monitor the load values. A steel spreader beam was installed 
between the hydraulic actuator and the specimen at the mid-span of the 
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slabs (Fig. 3). A four-point bending arrangement was accomplished by 
adding neoprene pads between the hydraulic actuator and the steel 
spreader beam. The loading configuration replicates the AASHTO HL-93 
design tandem with 4 feet of axle spacing [52], which produces the 
largest constant moment in the slabs. Photos of the test setups are pre-
sented in Fig. 4 and Fig. 5. 

The loading on the slabs was stepwise cyclic. The slab was initially 
loaded to 2 kip. The load was increased to 10 kip, held there, and then 
unloaded back to 2 kip (referred to as load step 1, L1). Next, the load was 
increased to 20 kip, held there, and then unloaded back to 2 kip (referred 

to as load step 2, L2). The slab was then loaded to 30 kip, held there, and 
then unloaded back to 2 kip (referred to as load step 3, L3). The load 
versus time graph designed for the tests is illustrated in Fig. 6. The load 
steps 1 through 3 were designed in the study because it is the anticipated 
range of vehicle loads that these slab superstructures may support 
throughout their lifetimes. 

2.2.1. Acoustic emission 
AE is defined as the transient elastic waves within a material, caused 

by the rapid release of localized strain energy [53]. The recording of a 
particular signal is referred to as a “hit”. The sensor response of a hit is in 
the form of a wave, which can be analyzed to obtain various parameters 
like amplitude, counts, duration, rise time, peak, and energy (Fig. 7). 
These parameters should cross a certain value to be captured, called a 
threshold, which is used to filter the noise signals during data collection. 

Acoustic emission data was collected using the Sensor Highway II 
data acquisition system and four broadband sensors (type WDI). The 
sensors have an operating frequency range of 100–900 kHz. This wide 
range ensures that the sensor can effectively collect the slab response 
with different frequencies. An attenuation test has been conducted to 

Fig. 1. Dimensions of the slabs.  

Fig. 2. Reinforcement details of the slabs.  

Table 1 
Slab characteristics and geometry.  

Test Location of 
Test 

Source of slabs Date of 
Test 

L 
(ft.) 

W 
(ft.) 

D 
(in.) 

T1 U of SC Calhoun Falls 
bridge 

8/20/21 15  5.5  8.25 

T2 U of SC Calhoun Falls 
bridge 

7/22/21 15  5.5  8.25  

Fig. 3. Test setup of the slabs.  
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verify the sensitivity of WDI sensors by performing the Hsu-Nielsen 
pencil lead break. The results indicated that the sensors were sensitive 
to receive the signals from the farthest location on the specimen surface. 
The system was produced by the MISTRAS Group, Inc. of Princeton 
Junction, New Jersey. Broadband sensors were selected because they 
have a wider range of operating frequencies than the resonant AE sen-
sors. The sensors were placed at a distance of L/3 and W/3 along the 
longitudinal and transverse direction respectively, as illustrated in 
Fig. 8. The sensors were attached to the specimen using double/bubble 
epoxy. 

With a threshold of 50 dB (dB), data was continuously collected as 
the test progressed. The threshold was determined to prevent extraneous 
data from being picked up by the sensors. Peak definition time (PDT), 
defined as the interval between threshold crossing and peak amplitude, 
was set at 200 µs. The peak of a hit is found using this parameter. Hit 
Definition Time (HDT), which is set to 400 µs, is the time after which the 

recording will be stopped. If hits with threshold crossings are not 
observed during HDT, hit recording will be stopped. A hit lockout time 
(HLT) of 800 µs is set to ensure any threshold crossing during this period 
will not be used in a hit waveform. 

3. Analysis procedure 

AE hits were collected during the flexural tests with the Sensor 
Highway II data acquisition system for further analysis. Single attribute 
analysis and an analysis using an ANN were implemented in the study to 
classify the AE hits to their corresponding vehicle loads based on their 
corresponding AE parameters. 

3.1. Single attribute analysis 

The first attempt at classification analysis was performed to extract 

Fig. 4. Photos of the test setup T1.  

Fig. 5. Photos of the test setup T2.  
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single attribute data from the test T1 and determine whether the attri-
bute was a reliable indicator for the classification of the AE hits to their 
respective load steps. Due to the lack of consequential data collected 
from the AE hits in L1, the classification was done only on the AE hits 
belonging to the load steps L2 and L3. Three AE parameters, amplitude, 
rise time, and energy, were analyzed using basic statistical analysis to 
classify the AE hits to their corresponding load steps. 

3.2. Artificial neural network 

Artificial Neural Network (ANN) is a computing system inspired by 
biological neural networks [54,55]. It is composed of an input layer, a 
series of hidden layers, and an output layer. An ANN consisting of three 
layers: j, i, and k, is shown in Fig. 9, where j is an input layer, i is a hidden 
layer, and k is an output layer. Numerous processing units known as 
neurons are present in each layer, and each neuron is interconnected 
with others. The layer j has m, i has n, and k has l number of neurons. m 
represents the number of variables and l represents the number of out-
puts in the network. The number of neurons in the hidden layer, n, is 
selected to optimize the configuration of the network. Weights used to 
transform the data between the input, hidden and output layers are 
denoted by W(ij) and W(kj). 

Due to the large number of data points collected during the test and 
the large number of features related to these AE hits, an artificial neural 
network was developed to classify the AE hits into two load steps: L2 and 
L3. Table 2 lists the 13 AE parameters and their definitions that were 
used in the study. The neural network goes through three steps for the 
classification AE hits: training, validation, and testing. 

Data from T1, which included the AE hits, about 23,000 hits from 
T1L2 (data collected during test 1 and load step 2) and T1L3 (data 
collected during test 1 and load step 3), was fed into the neural network. 
It randomly selected one-third of the data for training, another third for 
validation, and the final third for testing. The majority of the data in the 
total data set belonged to T1L3, which led to an imbalance issue in the 
network. The network became particularly good at classifying the data 
from T1L3 but was inaccurate at classifying the data from T1L2. Fig. 10 
shows the initial process of the neural network. 

To address the imbalance issue, an improved ANN was developed 
that would train, validate, and test an equal number of data from each 
load step. It was determined that the number of data belonging to T1L3 
was about ten times that of T1L2. To even out the data, ten different 
models were trained and validated with all the data from T1L2 and a 
random tenth of the data from T1L3. This process is referred to as 
“balanced training”. These models were then tested on the data that was 
taken before training or validation, and each model cast a classification 
vote. The majority rule applied to the votes of the model, and a final 
classification was determined, thus creating an improved ensemble 
ANN. Fig. 11 shows the process of the neural network ensemble. 

Once the algorithm was established, the optimal number of hidden 
layers as well as the optimal hidden layer size were determined through 
trial-and-error method. The optimal number and size were determined 
based on the output accuracy. Once optimized, this model was named 
MT1 (the model trained on the data from the test T1). 

After the algorithm was optimized, robustness of the trained neural 
network was tested on the data collected from an entirely different slab 

Fig. 6. Load vs Time.  

Fig. 7. Definitions of AE parameters.  

Fig. 8. A scheme of the test setup and AE sensor locations.  
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test. The neural network was trained using the data collected from T1, 
and the performance of the network was determined by the accuracy of 
the classification of the data collected from the test 2, T2. The classifi-
cation ability of MT1 was determined by analyzing the accuracy in 
classifying the data belonging to T2L2 (data collected during test 2 and 
load step 2) and T2L3 (data collected during test 2 and load step 3). A 
flowchart of this process can be seen in Fig. 12. 

4. Results and discussion 

The stepwise cyclic loads were applied to the slabs during the flex-
ural tests. AE hits collected from the tests were analyzed. This section 
shows the results obtained from the single attribute analysis and an 
analysis using ANN in classifying the AE hits to their corresponding load 
steps representing the vehicle loads on the slabs. 

4.1. Single attribute analysis results 

The AE parameters such as amplitude, rise time, and energy can 
represent the main information of an acoustic emission signal and they 

were the most used parameters for structural health monitoring in the 
literature. Therefore, this section presents a single attribute analysis 
includes a statistical analysis of the AE parameters: amplitude, rise time, 
and energy of the AE hits, collected from the test T1. 

4.1.1. Amplitude analysis 
Amplitude was the first attribute analyzed. The amplitude of AE hits 

was plotted along with the loading and time of the test T1 (Fig. 13). It 
was determined that the AE hits from T1L1 would be insignificant due to 
the lack of consequential data collected during this step. Attention was 
then turned to the differences between T1L2 and T1L3. The plot showing 
the amplitudes in T1L2 and T1L3 look similar with a greater density of 
AE hits and a higher peak amplitude in T1L3 compared to T1L2. 

To find more specific differences, simple statistics were extracted for 
T1L2 and T1L3. This data can be seen in Table 3, where the upper and 
lower limits were determined from the following equations, Eq. (1) and 
Eq. (2) respectively. 

Upper Limit = μ+ 3*σ (1) 

= 1,2,3, … , = 1,2,3, … , = 1,2,3, … ,

Fig. 9. Structure of a 3-layer ANN.  

Table 2 
AE parameters and definitions.  

Number AE parameters Descriptions 

1 Amplitude (dB) The maximum amplitude at the peak 
2 Count The number of threshold crossings 
3 Rise time (µs) Time interval between first threshold crossing 

and maximum amplitude 
4 Duration (µs) Time between first and last threshold crossing 

of signal 
5 Average frequency 

(kHz) 
Counts/Duration 

6 Root mean square 
(RMS) (V) 

The effective voltage with a characteristic time 
TRMS for average ranging from 10 to 1000 ms 

7 Average signal level 
(ASL) (V) 

The effective voltage with a characteristic time 
TASL for average ranging from 10 to 1000 ms 

8 Energy (10-14 V2s) The measure of the electrical energy measured 
for an AE signal 

9 Absolute energy The absolute measure of the electrical energy 
measured for an AE signal 

10 Reverberation 
frequency (kHz) 

Frequency after the peak 

11 Initial frequency 
(kHz) 

Frequency before the peak 

12 Signal strength A parameter to evaluate the AE source strength 
13 Counts to peak 

(PCNTS) 
The number of threshold crossings from the 
first threshold crossing to the peak  

Fig. 10. Initial flowchart for the ANN.  
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Lower Limit = μ − 3*σ (2) 

where μ is the mean and σ is the standard deviation of the sample. 
The average amplitude of T1L2 was 56.4 dB and T1L3 was 57.3 dB. 

The standard deviation for T1L2 and T1L3 was 6.31 dB and 6.93 dB, 
respectively. The upper and lower limits for T1L2 were 75.3 dB and 37.4 
dB, while the limits for T2L3 were 78.1 dB and 36.5 dB. The maximum 
amplitude achieved for T1L2 was 88 dB, while T1L3 reached a max 
amplitude of 99 dB. The number of AE hits collected during T1L2 was 
2,263, and for T1L3 it was 20,981. The results obtained from the sta-
tistical analysis of amplitude parameter looks similar for T1L2 and T1L3, 
making it difficult to classify the AE hits to their respective load steps L2 
and L3. 

A probability chart was created by plotting the probability of an 
amplitude occurring within that load step. The probability is obtained 
by taking the number of AE hits of that amplitude and dividing it by the 
total number of AE hits in that load (Eq. (3)). This chart can be seen in 

Fig. 14, which shows a similar pattern of probability of occurrence for 
the amplitudes in T1L2 and T1L3. Since, a significant difference in the 
probability chart cannot be found, the amplitude parameter may not be 
conclusive in the classification of AE hits to the load steps L2 and L3. 

PA(L2)(50) =
Number of 50 amplitude AE hits in T1L2

Total number of AE hits in T1L2
(3)  

4.1.2. Rise time analysis 
After comparing the amplitude, the rise time of AE hits was plotted 

along with the loading and time of the test T1 Fig. 15. For rise time 
analysis also, AE hits from T1L1 would be insignificant due to the lack of 
consequential data collected during this step. The plot showing the rise 
time in T1L2 and T1L3 look similar with a greater density of AE hits and 
a higher peak rise time in T1L3 compared to T1L2. 

The rise time was then statistically analyzed, and the statistical data 
are shown in Table 4. The average rise time of T1L2 was 82.3 μs and 

Fig. 11. Balanced training flowchart for the ANN.  
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T1L3 was 123 μs. The standard deviation for T1L2 and L3 was 89.1 μs 
and 154 μs, respectively. The upper and lower limits for T1L2 were 350 
μs and 1 μs while the limits for T1L3 were 586 μs and 1 μs. The maximum 

rise time achieved for T1L2 was 661 μs while T1L3 reached a maximum 
rise time of 1430 μs. The differences in the basic statistics in the rise time 
were more apparent than the amplitude parameter. However, there are 
AE hits in T1L2 and T1L3, which have the same rise time. The rise time 
for the AE hits in T1L2 ranges from 0 μs to 661 μs and the AE hits in T1L3 
ranges from 0 μs to 1431 μs. The range of the AE hits in T1L2 lies within 
the range of the AE hits in T1L3 until 661 μs. As a result, based on the rise 
time, it is difficult to classify these AE hits to their respective load steps 
L2 and L3. 

The probability of each rise time was plotted according to Eq. (4) to 
find out if it is possible to use rise time for the classification of the AE hits 
(Fig. 16). It is challenging to utilize these plots for rise time to differ-
entiate the AE hits to their respective load steps L2 and L3, since they do 
not demonstrate any notable distinctions. 

Fig. 12. Robustness of MT1 model.  

Fig. 13. Load & Amplitude vs time for T1.  

Table 3 
Amplitude statistics for T1.  

Amplitude (dB) T1L2 T1L3 

Mean 56.4 57.3 
Standard deviation 6.31 6.93 
Upper limit 75.3 78.1 
Lower limit 37.4 36.5 
Upper range 88 99 
Lower range 50 50 
Number of AE hits 2263 20,981  

Fig. 14. Amplitude probabilities for T1L2 & T1L3.  
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PR(L2)(52) =
Number of AE hits with rise time 52μs in T1L2

Total number of AE hits in T1L2
(4)  

4.1.3. Energy analysis 
Lastly, the energy of AE hits was plotted along with the loading and 

time of the test T1 Fig. 17. For the energy also, AE hits from T1L1 would 

be insignificant due to the lack of consequential data collected during 
this step. The plot showing the rise time in T1L2 and T1L3 look similar 
with a greater density of AE hits and a higher peak energy in T1L3 
compared to T1L2. 

The energy parameter was statistically analyzed, and the results are 
presented in Table 5. The average energy of T1L2 was 12.2 × 10-14V2s 
and T1L3 was 21.9 × 10-14V2s. The standard deviation for T1L2 and 
T1L3 was 20.8 × 10-14V2s and 56.5 × 10-14V2s, respectively. The upper 
and lower limits for T1L2 were 74.5 × 10-14V2s and 0 × 10-14V2s while 
the limits for T1L3 were 191 × 10-14V2s and 0 × 10-14V2s. The maximum 
energy achieved for T1L2 was 349 × 10-14V2s, while T1L3 reached a 
maximum energy of 1920 × 10-14V2s. The differences in the basic sta-
tistics for energy were less apparent than the rise time parameter but 
more apparent than the amplitude parameter. The energy parameter 
also suffers from the same problem as the rise time where the AE hits in 
T1L2 and T1L3 have same energy since the range of energy of the AE hits 
for T1L2 from 0 × 10-14V2s to 349 × 10-14V2s lies within the range of 0 
× 10-14V2s to 1920 × 10-14V2s of T1L3. It is therefore difficult to classify 

Fig. 15. Load & Rise time vs time for T1.  

Table 4 
Rise time statistics for T1.  

Rise time (μs) T1L2 T1L3 

Mean 82.3 123 
Standard dev 89.1 154 
Upper limit 350 586 
Lower limit 0 0 
Upper range 661 1430 
Lower range 1 1 
Number of AE hits 2263 20,981  

Fig. 16. Rise time probabilities for T1L2 & T1L3.  

Fig. 17. Load & Energy vs time for T1.  
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these AE hits to their load steps L2 and L3 based on the energy. 
The probability of the energy was plotted using Eq. (5) to find out if it 

is possible to use energy for the classification of the AE hits (Fig. 18). The 
plots for the probability of AE hits with the energy level for T1L2 and 
T1L3 are similar. Therefore, it is difficult to use the data for the classi-
fication the AE hits to their respective load steps L2 and L3. 

PE(L2)(14) =
Number of AE hits with energy 12 in T1L2

Total number of AE hits in T1L2
(5) 

In this section, statistical analysis of three AE parameters is pre-
sented. The goals of this analysis were to a) quantify the differences 
between the AE parameters collected during different load steps and b) 
determine whether the differences can be exploited to classify the data. 
It was concluded that, while there are some statistical differences, it is 
difficult to classify the AE hits from a single attribute analysis to their 
corresponding load steps L2 and L3. This conclusion led to the con-
struction of an ANN that allowed analysis of 13 attributes for classifi-
cation of the AE hits into the respective load steps L2 and L3. 

4.2. ANN results 

An artificial neural network was developed to classify the AE hits 
using 13 parameters extracted from the Sensor Highway II system. The 
goal of the algorithm was to accurately classify AE hits into their cor-
responding load steps. The performance of the model was measured in 
terms of recall: ratio of the number of correctly classified AE hits in a 
load step over the total number of AE hits in the load step, and accuracy: 
ratio of the number of correctly classified AE hits over the total number 
of AE hits for that test. The precision, ratio of the number of correctly 
classified AE hits in the load step over the total number of AE hits pre-

dicted in the load step, measured by the model is not of significant 
importance due to the large amounts of data present in each load step. 
Some of the AE hits predicted wrongly will not have a negative impact 
on the overall prediction. The recall, accuracy, and precision are 
calculated using Eq. (6), Eq. (7), and Eq. (8), respectively. 

Recall =
Number of correctly classified AE hits in the load step

Total number of AE hits in the load step
(6)  

Accuracy =
Number of correctly classified AE hits in the test

Total number of AE hits in the test
(7)  

Precision =
Number of correctly classified AE hits in the load step

Total number of AE hits predicted as the load step
(8)  

4.2.1. Performance of the original ANN 
The first neural network took data from T1, which included all the 

AE hits from T1L2 and T1L3 (over 23,000). AE hits, with their corre-
sponding parameters, were labeled as L2 and L3. The neural network 
received these datasets as input. The neural network randomly selected 
one third of the data for training, another third for validation, and the 
last third for testing. The neural network classified the AE hits based on 
the 13 parameters to load steps L2 and L3. 

The confusion matrix of the test is shown in Fig. 19. The numbers of 
AE data that are correctly localized in their corresponding classes are 
shown in the main diagonal of the confusion matrix. Out of 2,263 AE hits 
recorded in L2, 570 AE hits were correctly classified to L2 while 1,693 
AE hits were incorrectly classified to L3. Out of the 20,981 AE hits in L3, 
20,545 were correctly labeled as L3 and 436 were incorrectly classified 
to L2. In total, 21,115 AE hits out of 23,244 AE hits were correctly 
classified into their corresponding load steps, meaning the overall ac-
curacy is 90.8 %. In addition to accuracy, precision, and recall for each 
class are usually implemented to evaluate the performance of classifi-
cation in each class. The ANN model had a 25.2 % recall rate in the 
classification of L2, a 97.9 % recall rate in the classification of T1L3, The 
model is accurate at classifying L3; however, it is inaccurate in the 
classification of L2, causing an imbalance issue (the model is accurate at 
classifying L3; however, it is inaccurate in the classification of L2). This 
issue occurred because the model takes a random third of the data set for 
training, validation, and testing. The problem with this method is that 
the number of AE hits in the dataset belonging to T1L3 outnumbered the 
AE hits belonging to T1L2 by a ratio of 10:1. 

Table 5 
Energy statistics for T1.  

Energy (10-14V2s) T1L2 T1L3 

Mean 12.2 21.9 
Standard deviation 20.8 56.5 
Upper limit 74.5 191 
Lower limit 0 0 
Upper range 349 1920 
Lower range 0 0 
Number of AE hits 2263 20,981  

Fig. 18. Energy probabilities for T1L2 & T1L3.  
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4.2.2. Performance of the improved ensemble ANN 
To address this issue of imbalance, a balanced training and testing 

data set was developed where 10 different models were trained using 
even data from both T1L2 and T1L3. Moreover, the models were tested, 
each model voted, and the classification of the load step was determined 
by the majority of the models. This improved ensemble ANN had a 90.5 
% recall rate in the classification of T1L2; 410 AE hits out of 453 AE hits 
were correctly assigned to L2, whereas 43 AE hits were incorrectly 
classified to L3. It had an 81.2 % recall rate in the classification of T1L3; 
out of 421 AE hits, 342 AE hits were accurately assigned to L3, whereas 
79 AE hits were incorrectly classified to L2. An overall accuracy of 86.0 
% was attained in the model. The overall accuracy of the model has 
dropped by 4.8 %, but the recall rate of T1L2 increased by 65.3 % due to 
the balance in the training data for both T1L2 and T1L3. This model is 
much better suited to classifying both T1L2 and T1L3 AE hits. The 
confusion matrix for this model can be seen in Fig. 20. 

4.2.3. Optimization of ANN 
The improved ensemble ANN model was further optimized by 

determining the ideal number of neurons and hidden layers for a more 

balanced performance in classifying the AE hits. The model was run 10 
times for every neuron size from 20 to 30, and an average overall ac-
curacy was determined. An average was taken because the selection of 
data is random, which lead to a slight variability in performance from 
test to test. An optimal neuron number was found. The same process was 
repeated for the hidden layer size. The optimal number of neurons was 
found to be 23, and the ideal hidden layer size was determined to be one 
with the overall accuracy of the model being 85.65 %. Accuracies for 
models with varying neuron numbers and varying numbers of hidden 
layers can be found in Table 6 and Table 7. 

4.2.4. Robustness of the ANN 
Once optimized, this model was named MT1, and then tested against 

the 7,641 AE hits recorded in the test T2 to observe its reliability against 
the data that it had never seen before. The AE hits were classified to load 
steps L2 and L3, and the result of the model is shown in the confusion 
matrix shown in Fig. 21. Out of 756 AE hits in T2L2, 702 were correctly 
labeled to L2 while 54 were incorrectly classified to L3. Out of 6,885 AE 
hits, 4,874 AE hits were correctly assigned to L3 while 2,011 AE hits 
were incorrectly classified to L2. The model, which was trained solely on 
the T1 dataset, had a recall rate of 92.9 % in classifying AE hits in T2L2 
and a recall rate of 70.8 % in classifying AE hits in T2L3, with an overall 
accuracy of 73.0 %. The classification test using T2 data, showed the 
ability of the ANN model to classify unfamiliar data with an error of 27 
%. This is a preliminary study, so the accuracy of a well performing 
model has yet to be set. 

In this section, an algorithm was developed that utilized an artificial 
neural network to classify the AE hits to their corresponding loads using 
the differences of all 13 parameters instead of single parameter only. The 
idea prompting this method being that the small variances of the 13 
parameters would allow the system to accurately classify the data 
points. 

The initial analysis showed the need for a balanced training method 
in order to accurately classify both load steps. The improved ensemble 
ANN created after the balanced training showed the ability to overcome 
the imbalance of testing data and to accurately classify the AE hits based 
on the 13 parameters. The model was able to classify the AE hits cor-
responding to the vehicle loads, 20 kip and 30 kip representing the 
design tandem with 4 feet of axle spacing, with an overall classification 
accuracy of 86.0 %. 

Optimization of a neural network was done through an iterative 
process that resulted in a more balanced performance of the ANN. The 
classification test using T2 data showed the ability of the optimized 
improved ensemble ANN model to accurately classify the unfamiliar 
data. It also showed the ability for an ensemble ANN to classify the AE 
hits corresponding to the vehicle loads, 20 kip and 30 kip representing 
the design tandem with 4 feet of axle spacing, from an entirely different 
test with an overall accuracy of 73.0 %. 

Hence, using the AE hits, the optimized improved ensemble ANN 
model developed in the study can be used to measure the 20 kip and 30 
kip loads of the design tandem placed above the slab with a maximum 
error of 27 %. 

5. Conclusion and recommendations 

In this study, AE data was collected from flexural tests of two 15-foot 
precast RC flat slabs. Approximately 30,000 AE hits were analyzed and 
classified using statistical analysis of a single attribute of the AE hits. The 
paper then explored the possibility of using an improved ensemble ANN 
to classify AE hits into the load steps based on their 13 parameters. 
Following are the findings of the study: 

1. The traditional method of statistical analysis based on single attri-
butes of AE hits is not effective in classifying the AE hits to their 
corresponding vehicle loads. 

Fig. 19. Confusion matrix of imbalanced training on Test T1.  

Fig. 20. Confusion matrix of balanced training on Test T1.  
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2. A single ANN experienced an imbalance issue because of insufficient 
training data where the ANN had a 25.2 % recall rate in the classi-
fication of T1L2 whereas a 97.9 % recall rate in the classification of 
T1L3.  

3. Improved ensemble ANN overcame the imbalance issue in the testing 
data and improved the accuracy in classifying the AE hits belonging 
to T1L2. The ensemble ANN had an improved recall rate of 90.5 % in 
the classification of T1L2 and a recall rate of 81.2 % in the classifi-
cation of T1L3. 

4. The optimized improved ensemble ANN model was reliable in clas-
sifying the AE hits collected from the separate test, T2, with a recall 
rate of 92.9 % in classifying AE hits to T2L2 and a recall rate of 70.8 
% in classifying AE hits to T2L3, with an overall accuracy of 73.0 %. 
Hence, AE in conjunction with an optimized improved ensemble 
ANN can be used to determine the vehicle loads in the slab. 

More studies are needed to prove that the optimized improved 
ensemble ANN is a viable method for the classification of AE data. 

Studies must be done with more load steps and smaller step sizes to 
predict the vehicle load based on the AE data collected. Studies must be 
conducted on other typical structures. AE is dependent upon the me-
chanical properties of the surface the transducers are attached to. The 
current study and neural network developed would only work for 15- 
foot precast RC flat slabs. Furthermore, the study only takes into ac-
count the application of a concentrated load on the slab, whereas vehicle 
loads in the real world are always dynamic. Therefore, studies should be 
conducted to gather the AE response from the dynamic vehicle loads on 
the slab, and an ensemble ANN should be employed to predict the dy-
namic loads on the slab. 

Having access to enough AE data for the existing bridge is one of the 
practical issues for training a supervised learning method. Future 
research could focus on either the novel AE data augmentation method 
or utilizing numerical models to generate a large number of training 
data. 
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