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A B S T R A C T   

The detection and localization of damage in metallic structures using acoustic emission (AE) 
monitoring and artificial intelligence technology such as deep learning has been widely studied. 
However, a current challenge of this approach is the difficulty of obtaining sufficient labeled 
historical AE signals for the training process of deep learning models. This problem can be 
approached through the implementation of transfer learning. The innovation of this paper lies in 
the development of a transfer learning approach for AE source localization on a stainless-steel 
structure when no historical labeled AE signals are available for training. A finite element 
model is developed to generate numerical AE signals for the training. Unsupervised domain 
adaptation (UDA) technology is utilized to reduce the distribution difference between the nu
merical and the realistic AE signals and to derive the localization results of the unlabeled realistic 
AE signals. The results suggest that the proposed approach is capable of localizing AE signals with 
high accuracy in the absence of labeled training data.   

1. Introduction 

Metallic materials are commonly utilized for infrastructure components. Some metallic structures such as rails, bridges, pipelines, 
and nuclear facilities are subject to structural damage due to environmental erosion [1–3], fatigue damage [4], and other factors after 
extended periods of use. Ensuring the integrity and safety operation of metallic structures over their service life is a significant task. 
Traditional approaches including intermittent visual inspection have been applied to inspect and monitor damage in metallic struc
tures. However, visual inspection of large-scale structures is usually time-consuming and prone to human error. To improve the 
reliability and efficiency of damage inspection, an automated monitoring approach is highly desirable. 

Acoustic emission (AE) is a structural health monitoring (SHM) method that is extremely sensitive to damage propagation in 
materials [5]. The detection and localization of cracks in metallic structures can be implemented by deploying an AE sensor array 
[6–8]. Pearson et al. [6] developed the Akaike information criteria Delta-t mapping technique to overcome the difficulty of applying 
traditional time-of-arrival techniques to locate AE events in complex metal structures. The results show that the Akaike information 
criteria Delta-t mapping technique is a feasible option for AE source localization. Sai et al. [7] proposed a novel AE localization method 
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and a detection system for AE localization based on time reversal focusing imaging and a fiber Bragg grating sensor network. Results 
indicate the method improved AE detection and source localization with high precision. Yan et al. [8] proposed a new method to solve 
the multi-leakage source location problem of metal pressure vessels using AE sensors combined with a multi-signal classification 
(MUSIC) algorithm and wavelet packet analysis. AE sensors were deployed into a linear array to acquire signals from multiple leakage 
sources. The results suggested that the method can successfully locate two leak sources. Results from previous studies indicated that AE 
monitoring with multiple sensors has a good capability to detect and identify cracks in metallic specimens. However, challenges arise 
when applying AE monitoring in realistic metallic infrastructures. For some cases, the available area for sensor attachment is limited, 
and it would therefore be difficult to deploy sensor arrays to localize the damage. An intelligent and automated localization approach 
through the use of only a single AE sensor is desirable, and in many instances would be of benefit to the detection and localization of 
damage in metallic infrastructures. 

Adopting and leveraging artificial intelligence techniques including machine learning and deep learning may be a promising 
approach. Machine learning generally refers to supervised intelligent data processing techniques [9]. By learning features extracted 
from the data, machine learning can understand the pattern of data and make a decision [10]. Machine learning models such as 
artificial neural network, support vector machine (SVM), K-nearest neighbor (KNN), and random forest have been widely utilized for 
signal processing [11–14]. Deep learning methods are improved intelligent techniques which are based on machine learning. These 
methods can automatically learn features from complex data sets [15]. The application of deep learning in SHM has been investigated 
in numerous studies [16–18]. In recent years, machine learning and deep learning have also been applied to AE localization using a 
single AE sensor. AE signals that are generated from different locations on a structure have different reverberation patterns [19–21]. 
Deep learning algorithms can be used to automatically learn the reverberation patterns from the entire length of waveforms and relate 
the patterns to the zone where the signal is generated [21–23]. Ebrahimkhanlou et al. [21] proposed a deep learning framework based 
on a stacked autoencoder network to locate AE events on metallic structures. A good localization accuracy was obtained by using the 
proposed framework. The results indicated that CNN has the potential to automatically identify reverberation patterns from the AE 
signals and to locate the damage to its corresponding zone precisely. Ai et al. [22] studied the single sensor AE source localization on 
the stainless steel canister. A stacked autoencoder network was utilized to analyze the entire waveforms of AE signals and conduct 
zonal source localization. Han et al. [23] localized the damage on an engine using one AE sensor. PLB was used to simulate the damages 
in different parts of the engine. The wavelet images produced by the full-length AE waveforms were used as the input of a CNN. The 
CNN models successfully estimate the damaged part that generates the AE signals. 

Previous studies have proven that using deep learning to localize AE signals is promising. However, a current challenge of using the 
supervised learning algorithms on AE source localization is the difficulty with access to the labeled AE signals for existing structures. 
Transfer learning (TL) is a strategy to assist the supervised learning task when the available training data is limited [24]. TL has been 
utilized in the application of acoustic emission. Li et al. [25] utilized a multi-branch CNN model for AE wave classification on rails. The 
weights of a pre-trained AlexNet are adopted, except the last fully connected layer, to save time for training and to acquire a robust 
network using limited available AE training data. Chen et al. [26] proposed a transfer learning approach for AE–based rail condition 
evaluation. The weights of a CNN model trained by open-access audio data utilized the AE signals collected from the experiment. TL 
demonstrated good performance in the aforementioned studies. However, the limitations of the current study of using deep learning 
and transfer learning to localize AE signals is that those studies only focused on the scenarios when the realistic AE signals for training 
are limited but still available. In other words, a small amount of realistic historical AE signal is still an unavoidable necessity in those 
studies. To address the limitation, this research proposes a novel TL approach for AE localization on stainless steel structures. This 
approach does not need to be trained by any realistic AE signals collected in the real world. A finite element model is developed to 
generate numerical AE signals for the training of deep learning algorithms. Unsupervised domain adaptation (UDA) technology is 
utilized to decrease the difference between the generated numerical AE signals with realistic AE signals. The main contributions of this 
research are: (1) An novel TL approach without any labeled historical AE signals for training is firstly proposed for AE source local
ization by using numerical AE signals and a UDA technology named manifold embedded distribution alignment (MEDA); (2) A finite 
element model using six different excitation functions and a linear combinational output is designed to produce the numerical AE 
waveforms; (3) The impact of the iteration number and dimension of manifold space of MEDA has been illustrated; (4) The comparison 
of the localization performance between the TL approach without UDA technology and the proposed TL approaches using three 
different UDA technologies has been summarized and discussed; 

The remainder of the paper is organized as follows: Section 2 briefly introduces the theoretical background of transfer learning and 
unsupervised domain adaptation. Section 3 presents the experimental setup, including the material of the specimen and the acoustic 
emission setup. The proposed TL approach for AE source localization, including the acoustic emission waveform simulation, is 
explained in Section 4. Section 5 discussed the performances of the proposed TL approach using different UDA methods. The con
clusions are discussed in Section 6. 

2. Theoretical background 

2.1. Transfer learning and unsupervised domain adaptation 

The basic principles of TL and unsupervised domain adaptation (UDA) are introduced in this section. Generally, a sufficient number 
of training data and the corresponding labels are required by a supervised learning model such as artificial neural network and decision 
tree. However, in some cases, adequate training data with labels is difficult to obtain. TL is a strategy to solve this problem. Assuming 
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there are two datasets. The first dataset is {Xs,Ys} = {(xs1, xs2,⋯, xsm),
(
ys1, ys2,⋯, ysm

)}
, where 

(
ys1, ys2,⋯, ysm

)
is the label of 

(xs1, xs2,⋯, xsm), and is known. The second dataset is {Xt ,Yt} = {(xt1, xt2,⋯, xtn),
(
yt1, yt2,⋯, ytn

)}
, with the label 

(
yt1, yt2,⋯, ytn

)
being 

unknown. The concept of transfer learning is to execute the classification of {Xt ,Yt} based on the acquired knowledge from the model 
with training on {Xs,Ys}. The dataset {Xs,Ys} is referred to as the source domain (DS) and the dataset {Xt ,Yt} to be classified is referred 
to as the target domain (DT). One of the issues of TL is, the performance of TL based on DS and DT is not good when the difference 
between the source domain and the target domain is significant. UDA is a technique to learn the domain invariant features from the 
annotated source domain and the unannotated target domain and to reduce the distribution difference [27]. 

2.2. Manifold embedded distribution alignment 

As mentioned above, DS : {Xs,Ys}, and DT : {Xt ,Yt} have different data distribution which means they have different marginal 
probabilities (Ps(xs) ∕= Pt(xt)) and different conditional probability (Qs(xs|ys) ∕= Qt(xt |yt)). Manifold embedded distribution alignment 
(MEDA) is an UDA algorithm to reduce the distribution difference by utilizing manifold feature learning and dynamic distribution 
alignment [28]. Manifold feature learning is utilized to reduce the data drift between the source domain and the target domain. 
Dynamic distribution alignment is employed to align the marginal and conditional distributions. The MEDA aims to articulate a cross- 
domain classifier f to predict the unknown Yt. 

2.2.1. Manifold feature learning 
Manifold feature learning is an UDA method [29]. Manifold refers to the space with local Euclidean spatial properties, including 

curves and surfaces of various dimensions. One of the characterizations of manifold space is that features in the manifold space usually 
have good geometric structure. The manifold learning leverages this characteristic to avoid feature distortions by mapping high- 
dimensional data into a low-dimensional manifold space. In MEDA, the geodesic flow kernel (GFK) is employed to conduct the 
manifold feature transformation. More details about GFK can be found in [30]. The process of manifold feature learning in MEDA is 
presented in Fig. 1. 

2.2.2. Dynamic distribution alignment 
The importance of marginal distributions (P) and conditional distributions (Q) of the source domain and target domain tend to vary 

with the similarity of the two domains. For instance, marginal distribution is more significant when there are large differences between 
the source domain and target domain, while conditional distribution is more dominant when the two domains have high similarities. 
Therefore, the importance of P and Q needs to be quantitatively measured, rather than simply counting them with the same weights. To 
accomplish this goal, the dynamic distribution alignment process is proposed in MEDA to dynamically evaluate the importance of these 
two distributions. The process of dynamic distribution alignment may be presented by Eq. (1): 

Df (DS,Dt) = (1 − ω)Df (Ps,Pt)+ω
∑C

c=1
D(t)

f (Qs,Qt) (1)  

where, c ∈ {1,2,3,⋯,C} represents the classes of data, Df (DS,Dt) is the distribution after alignment, Df (Ps,Pt) refers to the marginal 
distribution alignment, D(t)

f (Qs,Qt) is the conditional distribution alignment for class t, and ω ∈ [0, 1] refers to the adaptive factor. If ω is 
close to 0, this is an indication that the distribution difference between the source domain and target domain is large. Therefore, 

Manifold feature learning

Dynamic 
distribution 
alignment

Domain 
classifier

Manifold space

Manifold space

Source domain Source domain Source domain

Target domain Target domain Target domain

Fig. 1. Procedures of MEDA.  
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marginal distribution alignment is more important. If ω is close to 1, this indicates that the difference between domains is small, and 
the conditional distribution alignment is more dominant. If ω = 0.5, it means the marginal and conditional distribution share equal 
importance. The optimizing of ω will be introduced in the following paragraph. 

Maximum mean discrepancy (MMD) is utilized to explore the distribution distance between two domains [31]. The MMD distance 
between domain a and b may be obtained by Eq. (2): 

MMD2(a, b) = ‖Em[θ(Zs)] − Ec[θ(Zt)]‖
2
Hk

(2)  

where, MMD(a, b) is the distance between domain a and b, Hk refers to the reproducing kernel Hilbert space induced by feature map 
θ(⋅), and E [⋅] is the mean of the embedded samples, m and c represent marginal and conditional distribution, respectively. Zs and Zt are 
the features transformed to the reproducing kernel Hilbert space. 

For the purpose of computing the MMD about f , the projected MMD [32] is adopted to calculate the marginal distribution 
alignment (Df (Ps, Pt)) and conditional distribution alignment (D(t)

f (Qs,Qt)) by the following equations: 

Df (Ps,Pt) = ‖Em[f (Zs)] − Ec[f (Zt)]‖
2
Hk

(3)  

D(t)
f (Qs,Qt) = ‖Em

[
f (Z(t)

s )
]
− Ec

[
f (Z(t)

t )
]
‖

2
Hk

(4) 

By substituting Eqs. (3) and (4) into Eq. (1), the final dynamic distribution alignment is obtained by Eq. (5): 

Df (DS,Dt) = (1 − ω)‖Em[f (Zs) ] − Ec[f (Zt) ]‖
2
Hk  

+ω
∑T

t=1
‖Em

[
f (Z(t)

s )
]
− Ec

[
f (Z(t)

t )
]
‖

2
Hk

(5) 

After the manifold feature learning and dynamic distribution alignment are completed, a domain classifier can be derived by Eq. 
(6). The procedure of dynamic distribution alignment and classification is illustrated in Fig. 1. 

f = argmin
∑t

i=1
(yi − f (Zi))

2
+ α‖f‖2

K + βDf (DS,Dt)+ γRf (DS,Dt) (6)  

where, Rf (⋅) is a Laplacian regularization to utilize the similar geometric properties of the nearest point in the manifold, and α, β and γ 
are regularization parameters. ‖f‖2

K denotes the squared norm of f . 
The label Yt of the target domain can be obtained by the domain classifier. However, the confidence level of the obtained label may 

not be high because the adaptive factor ω might not be the optimized value. Therefore, an optimization process of ω is designed in 
MEDA. The main procedure can be expressed by Eq. (7): 

ω = 1 −
dP

dP +
∑T

t=1dQ
(7)  

where dP refers to the A-distance [33] of marginal distribution, and dQ refers to the A-distance of the conditional distribution of each 
class. 

The adaptive factor ω is calculated at every iteration of the dynamic distribution adaptation, and the predicted label Yt is also 
updated with the iterations. More details about dynamic distribution alignment can be found in [28]. 
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Fig. 2. Schematic of acoustic emission approach.  
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2.3. Acoustic emission monitoring 

Acoustic emission is a physical phenomenon, which is related to the stress waves generated by the rapid release of elastic energy 
when cracks or damage form in materials [34]. AE waves can be detected and collected by deploying AE sensors on the surface of an 
object. An AE data acquisition system, including the sensors, is used to convert the stress waves into AE signals which are commonly 
recorded as a voltage. The method of recording and processing AE signals to diagnose the health status of an object is referred to as AE 
monitoring and evaluation [35]. The procedures of AE monitoring are illustrated in Fig. 2. Conventional approaches such as the time of 
arrival method have been widely utilized to localize AE sources by deploying sensor arrays. Usually, three or more sensors are needed. 
Several studies have focused on using one AE sensor to localize the AE source based on deep learning algorithms [21,22,36]. However, 
a current challenge of this approach is the difficulty of obtaining the labeled AE signals for the training process of machine learning and 
deep learning models. A TL approach is proposed in this paper to address this limitation. The implementation procedure of the 
approach is presented in Section 2.3. Details of the approach will be introduced in Section 4. 

2.4. Implementation procedure of the proposed TL approach 

The proposed TL approach consists of numerical modeling, data augmentation, transfer learning using manifold embedded dis
tribution alignment, and conducting source localization on realistic AE signals. The detailed implementation steps are described as 
follows:  

1) Develop a finite element model that has the same dimensions as the structure being monitored. Utilized the model to generate the 
numerical AE signals.  

2) Perform data augmentation on the numerical AE signal dataset by adding Gaussian white noise.  
3) Train a deep learning model using the augmented numerical AE signal dataset, while using manifold feature learning and dynamic 

distribution alignment to reduce the differences in marginal probabilities and conditional probabilities differences between the 
digital AE signal and the real AE signal.  

4) Utilized the trained model to localize the realistic AE signals that are captured on the structure being monitored. 

3. Materials and experimental setup 

The experiment was conducted with the aim of collecting AE signals as the source domain for the TL AE source localization 
approach proposed in this paper (introduced in Section 4). A specimen fabricated from 304 stainless steel is utilized in the experiment. 
The dimension of the specimen is 0.61 × 0.30 × 0.00635 m. A plan view of the specimen is provided in Fig. 3. 

3.1. Experimental procedure 

The Hsu-Nielsen pencil lead break (PLB) is one of the most widely used artificial sources to generate AE signals by conducting pencil 
lead breaks on the object to which the AE sensor is attached [37]. In this paper, A Hsu-Nielsen PLB test was conducted to simulate the 

Fig. 3. Experimental setup.  
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cracks on the steel plate with an angle of 30◦. Four zones were set up on the specimen. Using the signals from some points to represent 
the signals in an area is a simplified method used by previous studies [23,38–41]. In this paper, three points were marked with a red dot 
in each zone. The PLB was repeated 100 times on each of these points. A single AE sensor was attached to the corner of the specimen. In 
the experiment, 1200 AE events were collected. The location of the AE sensor and the locations for PLB in four zones are shown in 
Fig. 3. 

3.2. Acoustic emission instrument setup 

The hardware of the AE system was produced by the MISTRAS Group Inc., Princeton Junction, New Jersey. The AE sensor utilized 
in this experiment is a wideband type WDI-AST. The sensors have an operating frequency range of 100–900 kHz. The AE sensors were 
attached to the specimen by using red double/bubble epoxy, and AE signals were acquired by a 16-channel DISP system. The details 
regarding the AE acquisition parameters are presented in Table 1. The pre-trigger time, which recovers AE waveforms before the 
threshold crossing, was defined as 256 µs, the sampling rate was 1 M samples/s, and the duration was set to 2,000 µs. The peak 
definition time (PDT), which refers to the time between the first threshold crossing to the peak amplitude, was defined as 200 µs, and 
the hit definition time (HDT) was set to 400 µs. This controls the stop point of recording and is usually twice the peak definition time. 
The hit lockout time (HLT), which minimized the recording of late-arriving signals and reflected hits, was set to 400 µs. The threshold 
was 32 dB, and the high and low pass digital filters were set to 20 kHz, and 1 MHz, respectively. 

4. The proposed TL approach for AE source localization 

In this paper, the AE source localization is considered as a classification problem, with the AE signals classified to their corre
sponding zone. A TL approach for AE source localization by leveraging numerical simulation and UDA is proposed. This approach aims 
to localize the AE events using one AE sensor while no labeled training data is available. A three-dimensional finite element model is 
developed to simulate the generation of AE signals. The numerical AE signals obtained by the finite element model will be utilized for 
data augmentation to enable the large amount of data required for the following training process. The data after augmentation is 
utilized as the source domain. The AE signals collected during the experiment are employed as the target domain. An improved 
manifold embedded distribution alignment is utilized as the UDA method to reduce the difference between the source and the target 
domain, and to finally derive the source localization results. The workflow of the proposed approach is presented in Fig. 4. 

4.1. Acoustic emission waveform simulation 

The finite element model to simulate AE signals emitted is presented in this section. The model was developed in the commercial 
finite element platform ABAQUS, and the solver is Explicit. By applying the excitation source and reducing the size of the mesh, the 
high-frequency dynamic response may be obtained [42–46]. The finite element model has the same dimensions as the steel plate in the 
experiment. The material property utilized in the model is in agreement with the experimental specimens (304 stainless steel with the 
young’s modulus 193 GPa, the density is 8000 kg/m3). The mesh size is 0.001 m. The zonal definition and excitation points are kept the 
same with the experiment (Fig. 5a and 5b). 

During the experiment, when conducting pencil lead breaks (PLBs) in one point, the locations to apply the excitations were not 
exactly in the same points; due to human error a slight position shift is inevitable. To simulate the position shift and also increase the 
diversity of numerical signals, five sub-points are designed in the model as shown in Fig. 5c. The excitation sources will be applied in 
the five sub-points to generate the numerical signals in one zone. 

In previous studies, the PLB has been simulated by several excitation functions such as the cosine bell function [47], exponential 
function [48], and Gaussian distribution function [49]. For this study the cosine bell function is selected (Eq. (8)) and the exponential 
function (Eq. (9)) as the excitation source in the finite element model. The expressions of the excitation functions are presented as 
follow: 

F(t) =

⎧
⎪⎨

⎪⎩

1
2
− cos

(

(πt)
1

2T

)

fort ≤ T

1fort > T
(8) 

Table 1 
AE acquisition parameters.  

Setting Value 

Hit Definition Time 400 µs 
Peak Definition Time 200 µs 
Hit Lockout Time 200 µs 
Sampling Rate 1 M samples/s 
Threshold 32 dB 
Pre-trigger Time 256 µs 
High Pass Digital Filter 20 kHz 
Low Pass Digital Filter 1 MHz  
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Fig. 4. Schematic of the proposed TL AE source localization approach.  
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F(t) =

⎧
⎪⎪⎨

⎪⎪⎩

exp

(

−

(
1
2
(t − T)

5
T

)2
)

fort ≤ T

1fort > T

(9)  

where T refers to the period of the functions. To further increase the diversity of the numerical signals and simulate the randomness of 
the period of PLB applied in the experiment, three different periods: T1 = 1μs, T2 = 1.25μs, and T3 = 1.5μs are utilized for the 
excitation functions. All six excitation sources implemented in the model are illustrated in Fig. 6. 

The modeled PLB starts at a load of 0 N and ramps up to a certain value, after which it stays constant. The actual load of the PLB 
breaks during the experiment is unknown. Several previous literatures utilized 1 N as the assumption magnitude of PLB excitation 
[46–50]. This assumption value is of low significance because this value will only affect the amplitude of the obtained numerical 
waveform which will be normalized [48]. Therefore, this paper assumes the magnitude of the load is 1 N, and the acquired numerical 
waveform is normalized to − 1 and 1. 

When the stress wave passes through an AE sensor, the bottom surface of the AE sensor is excited by the stress wave and the signal is 
thereby generated and captured. However, in the FE model, the dynamic response can be obtained by extracting the relationship 
between displacement and time at a node of the model and filtering it through an anti-aliasing filter. This node has an infinitely small 
geometry that cannot represent the whole bottom surface of the sensor. Therefore, a combination of multiple nodes would be a strategy 
to simulate the AE bottom surface. In this paper, a single line output was employed [48]. The out-of-plane displacements of the nodes 
in a single straight line are collected. A weight is assigned to each node to account for the circular geometry of the sensor. Assuming the 
single line output is composed of n nodes, the combinational output of the n nodes can be calculated based on the following equations: 

wi =
dy • dxi

∑n
i=1dy • dxi

=
dy •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
D
2

)2
− Cyi

2
√

∑n
i=1dy •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
D
2

)2
− Cyi

2
√ (10)  

Usensor =
∑n

i=1
wi • Ui (11)  

where wi is refers to the weight that assigns to the ith node from the left side in the x-direction, dy refers to the distance between two 
nodes, D is the diameter of the AE sensor, and Cyi refers to the distance from the ith node to the center of the circle, Usensor is the single 
line output of the sensor and Ui is nodal out-of-plane displacement of the ith node. All the parameters in the equation are shown in the 

Fig. 5. Finite element setup: (a) experimental specimen; (b) finite element model; (c) excitation locations in zone 1.  
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schematic bottom view of the sensor (Fig. 7c). 
The location of the sensor in the finite element model is the same as in the experiment shown in Fig. 5a and 5b. The geometric 

dimensions of the WDI-AST sensor are shown in Fig. 7a. The diameter of the bottom surface is 28.6 mm. The single line output defined 
in the FE model is presented in Fig. 7b. Fifteen nodes can be observed on the line. 

AE sensors convert the excitation on the bottom to the electrical signal through the piezoelectric material. Different types of AE 
sensors have various frequency sensitive ranges because their piezoelectric material properties are not the same. The stable sensitive 
frequency range of the WDI-AST sensor is from 100 to 900 kHz. A band pass filter can be applied to simulate the frequency response of 
the WDI-AST sensor. Butterworth filter is a widely used digital filter which has high pass, low pass, band pass, band reject and other 
types [51–53]. It has been utilized to process the AE signals [53–55], and simulate the frequency response of AE sensor in previous 
study [48]. Therefore, in this paper, a bandpass Butterworth filter with the frequency of 100–900 kHz is developed and used to filter 
the Usensor obtained from the finite element model. The filtered waveforms are the final numerical AE waveforms. 

In summary, four zones are defined in the finite element model, while each zone has five sub-points. The six excitation sources are 
implemented in each of the sub-points. In total, 120 numerical AE waveforms can be obtained after the simulation is completed. 

4.2. Data augmentation of numerical waveforms 

One challenge for simulations of the acoustic emission phenomena is the lengthy computing time required due to the very small 
mesh size. In this study, the average time for the finite element model to generate one numerical signal is 26 min conducted on a 
workstation with a CPU-Intel i7-4970 3.40 GHz, 32 GB RAM. One hundred and fifty-six hours were required to generate all 360 
numerical AE signals. It is difficult to produce sufficient data for the source domain based on finite element simulations alone. A data 
augmentation process is therefore desirable to reduce the time to produce a sufficient amount of source domain data. A signal that has 
Gaussian white noise added to it will not be the same as the original signal but will have a high degree of similarity. Inspired by this, a 
data augmentation process is developed by adding Gaussian white noise to the original signals in the source domain. By changing the 
signal power of the noise, new datasets with slight differences can be derived. Four different signal powers 10, 15, 20, and 25 were 
employed to conduct the data augmentation. Finally, 1080 waveforms were obtained. The computing time for data augmentation is 
0.27 s. These waveforms are prepared as the source domain for the improved MEDA (introduced in Section 4.3). It should be 
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Fig. 7. Numerical waveform output setting: (a) geometric dimension of WDI-AST sensor; (b) nodes definition for single line output in FE model; (c) 
parameters to calculate single line output. 

Fig. 8. Flowchart of MEDA-ResNet-18.  
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mentioned that the data augmentation is unsupervised. No information on labels is used during the process. 

4.3. Improved manifold embedded distribution alignment 

The original MEDA employs k-nearest neighbor (KNN) as the domain classifier in the dynamic distribution alignment process. The 
domain classifier can derive labels for the target domain. However, the data in source and target domain in this paper are high- 
dimensional time series with 2048 sample points, the machine learning model such as KNN does not perform well when dealing 
with high-dimensional inputs without feature extraction. Previous research has reported that convolutional neural network (CNN) 
structures such as ResNet, and GoogLeNet work well on the identification of raw acoustic emission signals in applications such as the 
monitoring of the fracture of stay cable in bridges [56] and the wear of bearings [57,58]. Therefore, an improved MEDA is developed 
by replacing the KNN classifier with the ResNet-18. This paper names the improved MEDA as MEDA-ResNet-18. The procedures of 
MEDA-ResNet-18 are presented in Fig. 8. 

ResNet-18 is a CNN structure with the idea of residuals [59]. Sometimes, the performance of the network becomes less reliable 
when using a deeper structure due to gradient vanishing/explosion problems hindering network convergence. A residual block module 
was developed and applied in the ResNet-18 structure to overcome this problem by introducing skip connections that enable gradients 
to flow across several layers. The skip connections cause the outputs to learn a residual mapping. 

In this paper, the last FC layer of ResNet-18 is modified to have the class number consistent with the number of zones on the steel 
plate. 

The data in the source and target domain after manifold feature learning is converted to continuous wavelet transform (CWT) 
images and utilized as the input for the ResNet-18 model, because the ResNet-18 network requires RGB images as input. Converting the 
raw AE signals into time–frequency coefficients and present them by RGB colors can be a good way to prepare the input data for a deep 
neural network, while retaining most of the useful information. It has been verified to be reliable by previous studies [23,39,60]. This 
paper used the Morse wavelet as the mother wavelet function to conduct CWT. The Fourier transform of Morse wavelet is presented in 
Eq. (12): 

Ψp,γ(x) = U(x)αp,γx
p2
γ e− xγ (12)  

where U(x) refers to the unit step, αp,γ refers to the normalizing constant, p2 refers to the time-bandwidth product, γ is the parameter 
that characterizes the symmetry of the Morse wavelet [61]. In this paper, p2 and γ were defined as 60 and 3, respectively. 

5. Results and discussion 

5.1. Experimental recorded acoustic emission waveforms 

AE signals were continuously collected during the PLB experiments. Each of the signals is a time series with 2,048 sample points 
since the sampling rate of the data acquisition was set to 1 MHz, and the duration was set to 2,048 μs. Because the elastic waves are 

Fig. 9. Waveforms of the normalized AE signals in each zone.  
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subject to dispersion and attenuation during propagation, the amplitude of the AE signals varies substantially in different zones. If the 
AE signals are used as the input of a deep learning model without normalization, the model will focus on the amplitude, while other key 
properties may be overlooked and have a substantial impact on the performance of the model. Therefore, all AE signals were 
normalized by amplitude to a range of − 1 to 1 and utilized as the target domain in this paper. The waveforms of the normalized signals 
that were randomly selected from each zone are presented in Fig. 9. It can be seen that the patterns of the AE waveforms in different 
zones are varied. The proposed approach can recognize waveform patterns and classify them into the appropriate zones. 

5.2. Numerical acoustic emission waveforms 

The results of the finite element modeling are presented in Fig. 10. This figure represents expected wave propagation, in terms of 
out-of-plane displacement, from the point where the excitation source is applied. The wave generated by excitations in four zones is 
captured by a sensor and converted to numerical AE waveforms according to the method introduced in Section 4.1. It can be seen that 
different numerical signals generated from different points are varied, especially the side-reflections in the reverberation signals. These 
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differences are caused by the position of the PLB and the boundaries of the plate. In the later analysis, the distribution of these nu
merical signals is dynamically aligned with the distribution of the experimental signals. 

When AE signals propagate through imperfections or discontinuities, scattering phenomena such as reflection, transmission, and 
interference will happen, causing a considerable change in the modes and characteristics of the original signals [62]. It is important to 
discuss scattering because scattering determines the reverberation patterns of AE signals, and the deep learning classifier (ResNet-18) 
adopted in this paper learns the reverberation pattern to locate the damage. A typical numerical AE waveform and a typical experi
mental AE waveform from zone 1 were shown in Fig. 11a and 11b to compare the scattering characteristic. The amplitudes of 
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waveforms were normalized from − 1 to 1. The incident wave and a major reflected waves are marked with red boxes. Reflection 
coefficients of the marked major reflection for the numerical and experimental signals were calculated. The reflection coefficient is 
defined as the amplitude ratio of the reflected signal to the incident signal. It can be calculated by the equation [62] below: 

RC =
⃒
⃒Um

R (z)/U(z)
⃒
⃒ (13)  

where, RC represents the reflection coefficient, U(z) refers to the amplitude of the incident wave, and Um
R (z) is the amplitude of the m-th 

reflected wave. According to the equation, the RC is found to be 0.65 for the numerical signal and 0.78 for the experimental signal. The 
small difference in RC between the simulated and experimental signals suggests that they have relatively similar reflection charac
teristics and reverberation patterns. Please note that this paper only discussed the reflection characteristic because the specimen used 
herein is a simple plate. For the more complex structures in further field application such as steel plates with joints, bolts, and welds, 
the transmission characteristic should also be studied. Similar to the reflection coefficient, the transmission coefficient can be obtained 
by Eq. (14) [62]: 

TC =
⃒
⃒Um

T (z)/U(z)
⃒
⃒ (14)  

where, TC represents the transmission coefficient, Um
T (z) refers to the amplitude of the transmitted mode. 

In addition to compare the waveform and scattering characteristic, the frequency components of the signals can also be significant 
to investigated. Fast Fourier transformation (FFT) analysis was conducted, with the frequency spectrums shown in Fig. 11c and d. It 
can be noticed that the primary frequency of the experimental signal is in the range of 100–250 kHz (Fig. 11c). In the numerical FFT 
magnitude (Fig. 11d), the primary frequency also lies in 100–250 kHz which is aligned with the experimental signal frequency range. 

In summary, the numerical and experimental signals have similar reverberation patterns and scattering characteristic in the 
waveforms. Moreover, there is an alignment of the frequency component between the experimental and numerical signals. Those 
suggest that the numerical signal can simulate the experimental signal to some extent. However, there are still some differences be
tween the waveforms of the experimental and numerical signals, which indicates that the simulation and the experiment are not 
completely consistent. The UDA method proposed in this paper (MEDA-ResNet-18) is aimed to address this issue. It could learn the 
common marginal and conditional distributions between the experimental and the numerical signals and to reduce the differences 
between them. 

5.3. Results of UDA and transfer learning 

The 480 numerical AE waveforms after data augmentation are utilized as the source domain and the 400 AE signals recorded by the 
experiment are used as the target domain. GFK manifold feature learning is utilized to decrease the difference in distribution of the 
source and target domains. After GFK manifold feature learning, the waveforms in the reconstructed source and target domain are 
transformed to CWT coefficients. Fig. 12a and c illustrate example CWT coefficients of signals from source and target domain when the 
dimension of the low-dimensional manifold space is 190. The wavelet coefficients are scaled between 0 and 1. The Y-axis of the CWT 
coefficient was then converted to a logarithmic coordinate to present the time–frequency component more clearly. The coefficients 
were saved as RGB images with the size of 224 × 224 × 3 pixels (Fig. 12b and 12d). The RGB images are employed as the input of the 
ResNet-18 domain classifier. 

The CWT images in the source domain are employed to train the CNN model in MEDA-ResNet-18. The training dataset contains 90 
% of the randomly selected CWT images in the source domain. A validation dataset is constructed by the remaining 10 % of the CWT 
images. The computing of the CNN model is conducted on a workstation with a CPU-Intel i7-6700 3.40 GHz, 32 GB RAM, and an Nvidia 
GPU-GTX1080. For the ResNet-18 deployed in this paper, the gradient descent optimization was conducted using the Adaptive 
moment estimation (Adam) method [63]. The minibatch size was 32 and the learning rate was 0.0001. Fig. 13a and 13b present the 
accuracy and loss curves of the training and validation datasets from iteration 1 to 90. Both training and validation datasets approach 
100 % accuracy by the end of iteration 90, and the losses are close to 0. The training and validation reach the convergence around 
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iteration 5, and the curves are stable after converging. 
After the ResNet-18 model is trained by the source domain, the CWT images in the target domain are input into the trained model to 

derive the prediction label. As mentioned in Section 2.2.2, the derived label may not be accurate. The optimized prediction label can be 
obtained by dynamic distribution alignment after several iterations are conducted. The optimized prediction label is the final output of 
the MEDA-ResNet-18. In addition to the iteration number, the dimension of the low-dimensional manifold space d utilized during the 
manifold feature learning is another factor that can influence the result of MEDA-ResNet-18. To acquire the appropriate iteration 
number and dimension of manifold space, a trial-and-error test was conducted with results presented in Fig. 14. 

Seven manifold space dimensions (180, 190, 200, 210, 220, 230, and 240) are utilized in MEDA-ResNet-18. For all dimensions, the 
accuracies of the predicted label increased to over 90 % after iteration 5. The accuracies remain almost constant as the number of 
iterations increases to 10. This indicates that the iteration number should be at least 5. The highest accuracy (94.8 %) can be observed 
when the manifold space dimension is 210. Therefore, 210 was selected as the optimum manifold space dimension for MEDA-ResNet- 
18. 

5.4. Comparison and discussion 

5.4.1. Discussion of the effectiveness of the proposed TL approach 
To evaluate the effectiveness of the proposed TL approach, six scenarios are designed, and their corresponding accuracies are 

compared. The six scenarios are:  

1) Scenario 1: train and test with all the numerical waveforms in the source domain.  
2) Scenario 2: train and test with all the experimental waveforms in the target domain.  
3) Scenario 3: train on the source domain and test on the target domain without using UDA methods.  
4) Scenario 4: train on the source domain and test on the target domain with GFK manifold feature learning, no dynamic distribution 

alignment is conducted.  
5) Scenario 5: train on the source domain and test on the target domain with the original MEDA. 
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6) Scenario 6: train on the source domain and test on the target domain with improved MEDA-ResNet-18. 

The goal of scenarios 1 and 2 is to study the performance of AE source localization on the specimen if a sufficient number of well- 
labeled training data is available. ResNet-18 is employed in the two scenarios. The training, validation, and testing ratio are 80 %, 10 
%, and 10 %. The results of scenarios 1 and 2 are shown in the confusion matrixes in Fig. 15. The accuracy is 100 % for training and 
testing on the 1440 numerical waveforms in the source domain. The accuracy is 98.3 % for the 1200 numerical waveforms in the target 
domain. Results indicate that a good localization performance may be obtained if labeled training data can be provided. 

The objective of scenarios 3 to 6 is to investigate the performance of TL when no labeled training AE waveforms are available. The 
results are presented in the confusion matrixes in Fig. 16. The numbers of AE data that are correctly localized in their corresponding 
zones are shown in the main diagonal of the confusion matrix. When using 1440 numerical AE waveforms as the source domain, and 
using 1200 experimental AE waveforms as target domain, meanwhile no UDA method is applied (scenarios 3), a low prediction ac
curacy (43.5 %) is observed (Fig. 16a). When using GFK manifold feature learning as the UDA method, the prediction accuracy in
creases from 43.5 % to 78.7 % (Fig. 16b). The accuracy further increases to 90.9 % (Fig. 16c) when the UDA method is changed to 
MEDA. Finally, the highest prediction accuracy (94.8 %) can be acquired if the improved MEDA-ResNet-18 is utilized (Fig. 16d). By 
observing the results of the four scenarios, it can be noticed that the prediction accuracy of the target domain significantly increases if 
UDA is implemented. Among the three UDA methods, the improved MEDA-ResNet-18 described in this paper has the best performance. 
The localization accuracies of all the scenarios and their training, validation, and testing data are provided in Table 2. 

In addition to accuracy, precision rate and recall rate for each class are usually implemented as the metrics to evaluate the clas
sification performance in each class [64]. The value of precision rate and recall rate is obtained through the following equations: 

Recall =
TP

TP + FN
(15) 
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Fig. 16. Source localization accuracy: (a) scenario 3- no UDA; (b) scenario 4- using GFK manifold feature learning; (c) scenario 5- using MEDA; (d) 
scenario 6- using MEDA-ResNet-18. 
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Precision =
TP

TP + FP
(16)  

where TP refers to true positives, which means the number of samples that correctly classify into the corresponding class, FP refers to 
false positives, which is the number of samples that do not belong to the class but are classified into the class by error, FN refers to false 
negatives, the number of samples that belong to the class but are classified into the other classes by error. 

Precision and recall influence each other. A class with high precision usually has a low recall and vice versa [64]. To compre
hensively evaluate the efficiency of the classifier in each class, the F1-score can be employed. The F1-score, also referred to as the 
balanced F score, is defined as the harmonic mean of precision and recall [65]. It can be provided by Eq. (17): 

F1 =
2 × Precision × Recall

Precision + Recall
=

2TP
2TP + FP + FN

(17) 

The comparison of the three metrics, precision rates, recall rates, and F1-score for the four zones of scenarios 3 through 6 are 
presented in Fig. 17. This figure indicates that the three metrics of scenario 6 using improved MEDA-ResNet-18 are generally the 
highest, particularly much higher than scenario 3 using no UDA. It can be noticed that the three metrics obtained by scenario 6 are 
relatively stable, while the other three scenarios show evident variety in different zones. These observations of precision rates, recall 
rates, and F1-score suggest that scenario 6 using the improved MEDA-ResNet-18 presents the best performance. This is also aligned 
with the observation of accuracy. 

5.4.2. Comparison of the single-sensor source localization methods 
The MEDA-ResNet-18 proposed in this paper uses ResNet-18 as a classifier for single-sensor localization. In this section, several 

single-sensor source localization classifiers for AE, such as artificial neural network (ANN) used in [36], random forest used in [22], 
GoogLeNet employed in [58], and VGG-19 utilized in [5], were compared and discussed. Those methods were validated using scenario 
2 (train and test with all the experimental AE signals). The input data of the ANN and random forest are the parametric features 
extracted from the AE waveforms. The names of the features and their description are presented in Table 3. 

The ANN used in the comparison has 2 layers with 21 neurons each layer. The number of decision trees in the random forest model 
was set to 200. These hyperparameters were determined after conducting serval trial and error tests. The GoogLeNet, VGG-19, and 
ResNet-18 were trained and tested on a workstation with a CPU-Intel i7-6700 3.40 GHz, 32 GB RAM, and an Nvidia GPU-GTX1080. 
The localization accuracies of ANN, random forest, GoogLeNet, VGG-19, and ResNet-18 are presented in Table 4. The highest accuracy 
(98.5 %) was obtained by ResNet-18. This demonstrates that the performance of the single-sensor source localization method using 
ResNet-18 is respectable. Applying it to the TL method (MEDA-ResNet-18) proposed in this paper is appropriate. 

5.4.3. The influence of the mother wavelets functions 
This section compares and discusses the impact of using different mother wavelets functions on the ResNet-18 localization method. 

Three types of mother wavelets functions: Morse wavelet, Analytic Morlet wavelet, and Bump wavelet were utilized in this com
parison. The wavelets images generated by these three kinds of wavelet functions are fed to the ResNet-18 model. The model was 
validated using scenario 2 (train and test with all the experimental AE signals). The accuracies of using different mother wavelets 
functions are listed in Table 5. 

The results showed that using different mother functions has a minor effect on the performance of the model. Among them, the 
images generated by Morse and Morlet can yield slightly higher accuracies than Bump. This paper selected Morse wavelets function as 
the mother function in this paper. 

5.4.4. The influence of the size of the target domain 
In the field application, the amount of AE signals from damages on the structures being monitored would be limited. In other words, 

the size of the target domain would be limited. To investigate the influence brought by the size of the target domain, eight subsets of the 
target domain were created: (1) subset with 1200 samples; (2) subset with 900 samples; (3) subset with 600 samples; (4) subset with 
300 samples; (5) subset with 240 samples; (6) subset with 180 samples; (7) subset with 120 samples; (8) subset with 60 samples. The 
accuracy of the proposed TL approach using the above eight subsets as the target domains is presented in Fig. 18. It can be observed, 
that as the number of signals in the target domain gets smaller, there is a decrease in the accuracy of localization. The decrease in 
accuracy is not significant as the number of signals decreases from 1200 to 300, only dropping from 94.8 % to 91.0 %. When there are 

Table 2 
Accuracies of six scenarios.  

Scenarios Training Validation Testing UDA method Accuracy 

Scenario 1 80 % Source 10 % Source 10 % Source N/A 100 % 
Scenario 2 80 % Target 10 % Target 10 % Target N/A 98.3 % 
Scenario 3 90 % Source 10 % Source 100 %Target N/A 43.5 % 
Scenario 4 90 % Source 10 % Source 100 %Target GFK 78.7 % 
Scenario 5 90 % Source 10 % Source 100 %Target MEDA 90.9 % 
Scenario 6 90 % Source 10 % Source 100 %Target MEDA-ResNet-18 94.8 % 
* Source refers to Numerical AE waveforms; Target refers to Experimental AE waveforms  
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240 signals in the target domain, the accuracy is 87.5 %, which is an acceptable result. However, if the number of signals continues to 
drop, a significant decrease in accuracy is observed. When there are 60 signals left in the target domain, the accuracy of localization is 
55 %. This illustrates that the TL approach proposed in the present paper has requirements on the number of signals in the target 
domain. To obtain acceptable source location results, the number of signals in the target domain needs to reach 16.7 % (240signals / 
1440signals) of the number of signals in the source domain. 
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Fig. 17. Comparison of classification performance in each zone: (a) recall rate; (b) precision rate; (c) F1-score.  

Table 3 
Descriptions of the input parametric features.  

Parametric features Feature descriptions 

Amplitude 
Energy 

The peak amplitude of AE waveform 
The measure of the electrical energy measured for an AE signal 

Count 
Counts to peak (PCNTS) 

The number of threshold crossings 
The number of threshold crossings from the first threshold crossing to the peak 

Rise time The time interval between first threshold crossing and peak 
Duration The time between the first and last threshold crossing 
Average frequency 

Signal strength 
Counts divided by Duration 
A parameter to characterize the overall frequency content of an AE signal 

Absolute energy The absolute measure of the electrical energy measured for an AE signal 
Peak frequency Frequency of maximum signal contribution 
Reverberation frequency Frequency after the peak 
Initial frequency Frequency before the peak 
Signal strength Integral of the rectified voltage signal over the duration of the AE waveform  
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6. Summary and conclusions 

The Supervised learning algorithms have been investigated to localize AE signals on metallic structures [22]. However, the dif
ficulty of accessing the labeled AE signals is a crucial challenge. This paper proposes a TL approach for the localization of acoustic 
emission on metallic structures without historical AE signals for training. A finite element model is developed to simulate stress wave 
propagation and generate numerical AE signals. The distribution difference of the numerical and realistic AE signals is reduced by an 
improved MEDA-ResNet-18 UDA method, and the source localization results of the realistic AE signals are acquired. To evaluate the 
effectiveness of the proposed approach on metallic structures, a 304 stainless steel plate was used as an experimental specimen to 
collect AE signals and validate the proposed approach. The main conclusions of the paper are summarized as follows: 

The performance of source localization approach using the ResNet-18 model is studied by respectively using the collected 
experimental AE signals and numerical signals. Results indicate that a good localization performance can be observed when the labeled 
training data is available. 

The numerical signals generated by the finite element model are employed as the labeled source domain. The experimental AE 
signals are adopted as the unlabeled target domain. The TL source localization accuracies of the scenarios not employing the UDA 
method (43.5 %), using the GFK method (78.7 %), using MEDA (90.9 %), and using the improved MEDA-ResNet-18 (94.8 %) are 
compared and discussed. The results suggest that using the UDA method can significantly increase the localization accuracy on the 
target domain. The best performance was obtained by the improved MEDA-ResNet-18 (94.8 %). Recall rate, precision rate, and F1- 
score suggest that the improved MEDA-ResNet-18 has the optimum performance of localization for each individual zone. 

The frequency content of the signal generated by the finite element model is similar to the values attributed to the experimental AE 
signal. However, the similarity between the waveforms of the numerical and experimental AE signal is not significant. Future work can 
focus on improvement of the model by developing a surface output that is more realistic than the single line output adopted in this 
paper. Another recommendation for future work could be to place more points in each zone so that deep learning models can learn the 
signature of signals at different locations in the region. This could make the zonal source localization approach more reliable and 
stable. 

The limitation of the current study is that the proposed method was developed based on a simple steel plate. Future work and the 

Table 4 
Accuracies of different single-sensor source locali
zation methods.  

Models Accuracy 

ANN  91.7 % 
Random forest  94.1 % 
GoogLeNet  96.7 % 
VGG-19  96.7 % 
ResNet-18  98.3 %  

Table 5 
Accuracy of ResNet-18 using different wavelets functions.  

Input Accuracy 

Input: CWT-Morse 98.3 % 
Input: CWT-Morlet 

Input: CWT-Bump 
98.3 % 
97.5 %  

Fig. 18. Influence of the number of AE signals in the target domain.  
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effort may be needed to apply the method on more complex structures (e.g., plates with joints, bolts, and welds) to further extend the 
reliability and stability of our proposed method. 
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