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Abstract
Aircraft structures are exposed to impact damage caused by debris and hail during their service
life. One of the design concerns in composite structures is the resistance of layered surfaces to
damage, which occurs from impacts with various foreign objects. Therefore, the impact
localization and damage quantification of impacts should be studied and considered to address
flight safety and to reduce costs associated with a regularly scheduled visual inspection. Since
the structural components of the aircraft are large scale, visual inspection and monitoring are
challenging and subject to human error. This paper presents a promising solution that can
automatically detect and localize an impact that may occur during flight. To achieve this goal,
acoustic emission (AE) is employed as an impact monitoring approach. Random forest and deep
learning were adopted for training the source location models. An AE dataset was collected by
conducting an impact experiment on a full-size thermoplastic aircraft elevator in a laboratory
environment. A dataset consisting of AE parametric features and a dataset consisting of AE
waveforms were assigned to a random forest classifier and deep learning network for the
investigation of their applicability of impact source localization. The results obtained were
compared using the source localization approach in previous research using a conventional
artificial neural network. The analysis of results shows the random forest and deep learning
leads to better event localization performance. In addition, the random forest model can provide
the importance of features. By deleting the least important features, the storage required to save
the input and the computing time for the random forest is greatly reduced, and an acceptable
localization performance can still be obtained.

Keywords: impact monitoring, acoustic emission, artificial neural network, random forest,
stacked autoencoder

(Some figures may appear in colour only in the online journal)

1. Introduction

Impact events are inevitable in the operation of aircraft. It is
necessary to conduct prompt maintenance in order to ensure

∗
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safety operability. Conventional inspections of aircraft struc-
tures usually refer to visual inspections, which are conduc-
ted on the apron during the gaps between flights, and more
detailed inspections are performed at the base, where more
sophisticated methods can be applied [1]. A nondestructive
health monitoring system can be used to measure the impact
location instead of or in addition to workers to assist the visual
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inspections and to mark the damaged zones for further detailed
measurement of structural health condition. Data collected by
such systems can be downloaded and processed between flight
operations. Once proven effective, the nondestructive health
monitoring system may improve the accuracy of inspection,
shorten the time for inspection, and extend the time on main-
tenance and repair.

Acoustic emission (AE) is a non-destructive structural
health monitoring and sensing technology [2–11]. This
method is sensitive and has continuous monitoring capabil-
ities [12–14]. It has been utilized as a measurement tool to
assess the health condition of materials [15–18]. Santos-Leal
et al [15] developed a simultaneous measurement system to
investigate the relation between the information measured by
AE and electrical resistance variation during the stress corro-
sion crack propagation in high-strength low-alloy steels. The
results indicated the cumulative counts and cumulative energy
of AE showed a very similar temporal behavior with elec-
trical resistance variation. Li et al [16] proposed an approach
to quantify the fatigue cracking size in rail tracks using AE
An empirical model derived was utilized for the quantification
of crack size using the AE wave generated by the crack clos-
ure process during the fatigue test. The results indicated that
the AE count rate has correlations with the crack length. Liu
et al and Du et al [17] utilized AE as a measurement method
towards the forecasting and prevention of disastrous mining
accidents such as rock bursts. The particle flow code (PFC2D)
is developed by the authors to study the hidden patterns among
the damage mechanism of the rock and AE signals. Liu et al
[18] investigated AE signals generated by coal ruptures under
uniaxial compressive loads. The relationship between the coal
damage and the AE counts, frequency, and AE energy was
studied. Based on the literature, AE can be used as a meas-
urement technique in structural health monitoring in different
applications.

Developing AE monitoring systems compatible with the
requirements of aircraft is of interest. The traditional localiz-
ation approach is the time of arrival method. The AE source
localization can be obtained by analyzing the signals captured
by multiple AE sensors. However, due to weight and power
restrictions, the main challenge of applying AE in aircraft is to
use as few sensors as possible while obtaining accurate impact
localization results. Machine learning techniques can be a tool
to solve the source localization problem in this situation. The
authors proposed a passive structural health monitoring sys-
tem for the measurement of impact location on aircraft elevat-
ors in a previous paper [19]. AE signals caused by impacts are
collected by a single AE sensor. Parametric features such as
count number, signal strength, and duration were employed
as the input data set of the backpropagation (BP) artificial
neural network (ANN). The outputs of the neural network
were zonal source localization results. The results showed
that the proposed system is feasible and is able to obtain an
acceptable accuracy inmeasuring the location of impact. Com-
pared to the traditional source location approach, a machine
learning-based method like ANN can receive good localiz-
ation accuracy by using only one AE sensor, which is suit-
able for an aircraft. However, a major problem of ANN in this

localization approach is the convergence, as well as becom-
ing easily trapped in locally optimal solutions [20]. When the
number of layers in a neural network exceeds four, the optim-
ization of the entire network would be a problem because
of the vanishing/explosion gradient [21]. In addition, another
major problem is that it is necessary to manually extract fea-
tures on the collected data and select appropriate features as
training input [22]. This usually depends on experience and
other important features may be overlooked. An improved
passive health monitoring system using AE with an advanced
source localization approach is needed.

Random forest is an approach that can be used to improve
passive health monitoring systems. The random forest is a
machine learning method based on statistical learning the-
ory [23]. It combines the bootstrap resampling method and
a decision tree algorithm. The essence of this algorithm is
to train multiple decision tree models independently, then
put together the results of these decision trees. The res-
ult with the most votes is the final prediction result. The
random forest has an advantage in that the importance of
input variables can be ranked. It provides theoretical support
for feature selection. In recent years, the random forest has
been successfully applied as an analysis approach tool in AE
monitoring. Shevchik et al [24] successfully developed an
approach to predict the scuffing failure in lubricated mech-
anical components by using AE and random forest. Wang
et al [25] employed the random forest machine learning
approach to study the link between AE signals and the phe-
nomena of fiber fracture during natural fiber reinforced plastic
machining. Iquebal et al [26] utilized random forest to con-
nect the patterns of the corresponding AE signals with the
microstructural phases on a metallic workpiece surface under
a nanoindentation-based lithography process. These studies
show the capability of random forest in the field of AE
monitoring.

An alternative approach is adopting deep learning. Deep
learning is a method based on representational learning of data
in machine learning [27]. The concept of deep learning stems
from the study of ANNs. Deep learning combines low-level
features to form more abstract high-level features to discover
the distributed feature representations of data. Deep learning
was initially proposed by Hinton et al [28]. In this study, the
authors employed the greedy layer-wise training technique and
unsupervised back-propagation algorithm to solve the prob-
lem of vanishing/explosion gradient and obtained good results.
Another advantage of deep learning is that the raw data can
be employed as the input data which means manually feature
extraction is not needed [29]. Recently, deep learning has been
utilized in the fields of vibration signal processing and AE
monitoring [30–33]. Li et al [30] proposed a gearbox fault dia-
gnosismethod based onAE.A deep random forest was utilized
as the classification algorithm. He et al [31] used a deep learn-
ing model to classify AE signals to diagnose bearing failures.
Shevchik et al [32] used AE technology to develop an on-site
health monitoring system for additive manufacturing. An AE
data classification method based on a spectral convolutional
neural network was developed. Ebrahimkhanlou et al [33]
worked on a deep learning framework for locating AE events
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Figure 1. Procedures of the random forest-based passive monitoring system.

on the metal-like plate structures. These studies demonstrate
the potential of applying deep learning in the field of AE mon-
itoring.

The main contribution of this paper is to develop an optim-
ized algorithm for precisely estimating impact locations using
deep learning and random forest. Currently, the authors are
not aware of published work where random forest and deep
learning is applied to the measurement of impact locations
in realistic aerospace structural components. To fill this gap,
an improved AE-based passive structural health monitoring
system using random forest and deep learning is developed
herein and the source location results are compared with the
previously publishedmethod. The proposed system can facilit-
ate structural health monitoring of large-scale aerospace struc-
tures by improving the source localization measurement and
reducing human error.

2. Theoretical background and methodology

2.1. Zonal source location using random forest algorithm

This study focuses on an improved random forest-based pass-
ive monitoring system. The random forest-based passive mon-
itoring system includes two phases: the in-flight phase and the
after-flight phase. The different steps of these two phases are
identified in the flowchart which is presented in figure 1.When
the aircraft is in the in-flight phase, one single AE sensor is
mounted on the spar of the elevator component for the record-
ing of impact events during the flight operation. The initial
signals received by the AE sensor are analog signals, which
can be analyzed in a computer platform after sample pro-
cessing. Before the initial AE signals are sampled, they are
filtered by a low-frequency high-pass filter which is used to
avoid aliasing during processing, and a high-frequency low-
pass filter which is used to match the sampling rate obtained

by the data acquisition system. Further processing of the
signal is dependent upon a settable threshold for the signal
amplitude (voltage). The processed signals are stored after
sampling.

The stored signals are employed to localize the impact
events. Before the training of random forest, features are
extracted from these stored signals. The stored signals are
reconstructed using the Whittaker–Shannon reconstruction
concept [34]. AE features such as rise time, signal amplitude
and signal strength can be extracted from the AE wave after
reconstruction. The features are then gathered as a final data
set for after-flight analysis.

The random forest model is implemented on the ground,
after landing, and uses the stored features to localize each AE
event.

2.1.1. Whittaker–Shannon reconstruction. The Whittaker–
Shannon reconstruction algorithm reconstructs the original
AE signals from a set of sampling data points. The calcula-
tion process is presented in equation (1):

X(t) =
∞∑

n=−∞
Xs (n) sinc

(
t
Ts

− n

)
(1)

where Xs refers to the sampling spectrum. It can be obtained
by equation (2):

Xs (ω) =
1
Ts

∞∑
k=−∞

X

(
ω− 2πk
Ts

)
(2)

where Ts refers to the sampling period and sinc(∗) is the
inverse Fourier transform of the ideal low pass filter G, which
must satisfy the following requirement in equation (3):

G= sinc

(
t
Ts

)
=

{
1, t= 0

sin(πt
Ts )

πt/Ts
, t ̸= 0

. (3)
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Figure 2. Procedures of DNN-based passive monitoring system.

2.1.2. Random forest. Random forest is an ensemble learn-
ing algorithm, a kind of bagging algorithm [23]. This
algorithm provides the results by combining multiple weak
learning models. The results of the weak learning models are
voted or averaged to obtain the result of the overall model [35].
The weak learning model refers to the model with a prediction
accuracy that is only slightly higher than the random guess.
The weak learning model employed in the random forest is
the decision tree.

The decision tree makes classification decisions based on
multiple features. At each node of the tree, the leaf node of
the next layer is branched through a criterion according to the
performance of the features. With layer-by-layer branching,
the sample categories included in the leaf nodes will gradually
become consistent, and the terminal leaf node is the classifica-
tion result of the decision trees. In this paper, the Gini impurity
of the node is used as the branching criterion when generat-
ing the decision tree. The Gini impurity of a node refers to
the probability that a sample randomly selected from a node
is misclassified when the sample is classified according to the
distribution of the samples in the node. Therefore, the purity
of the samples is negatively correlated with the Gini impurity.

Assuming that the sample set N contains K categories, then
the Gini impurity of node t is obtained by equation (4):

Gini(S) = 1−
K∑
i=1

P
(
i/t

)
(4)

where P
(
i/t

)
is the probability of category i at node t. When

Gini(S) = 0, or less than a predetermined threshold, it means
that the samples belong to the same category. Otherwise, the
sample is divided into two parts N1 and N2, according to fea-
ture F, and then allocated to the two sub-nodes. As shown in
equation (5):

Gini(N,F) =
N1
N

Gini(N1)+
N2
N

Gini(N2) . (5)

According to this layer-by-layer branching, until the number
of samples in the node is less than the predetermined threshold,
or the Gini impurity of the sample set is less than the prede-
termined threshold, or there are no more features, the system
stops growing and forms a decision tree to accomplish classi-
fication and prediction.

Figure 3. A stacked autoencoder contains n autoencoders.

Bagging is a parallel ensemble learning method. Based on
the bootstrapping method, a fixed number of samples are col-
lected from the training set with replacements. Thereby, a
sample set for each basic learning model is formed. Because
of the replacement sampling, some samples may be repeated,
while some samplesmay not be drawn. The final result is voted
or averaged from the result of all the basic models. The ran-
dom forest algorithm is a combination of a decision tree and
bagging. The decision tree is utilized as the basic learning
model. Bagging improves the generalization error by reducing
the variance of the basic learning model. The performance of
bagging depends on the stability of the basic model. When
the basic model is unstable, bagging helps to reduce the error
caused by the randomfluctuation of the training set. If the basic
model is stable, bagging does not improve the performance of
the model, andmay even reduce the model’s performance. The
decision tree plus the bagging effectively decreases the vari-
ance of a single decision tree, thereby obtaining a complete
random forest.

The random forest model can calculate and evaluate the
importance of features through the feature division process
while predicting or classifying [35]. The calculation requires
the help of the Gini impurity when the leaf node is branching;
the method is shown as equations (6) and (7):
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Figure 4. Elevator specimen.

Table 1. Laminate lay-up.

Pcomp Description Lay-up

81 000 5-ply skin panel (45, 0/90, 45, 0/90,
45)

81 002 7-ply skin at
rear beam and
rib interface

(45, 0/90, 45, 0/90,
45, 0/90, 45)

81 003 8-ply skin panel (45, 0/90, 45, 0/90,
0/90, 45, 0/90, 45)

It (F) = Gini(N)−Gini(N,F) (6)

S(F) =
∑
t

It (F) (7)

where It (F) refers to the decrease of the Gini impurity before
and after node t is split into two sub-nodes according to feature
F. The absolute importance of feature S(F) can be defined as
the sum of It (F) at all nodes split by feature F. The import-
ance score of each feature can be obtained by normalizing the
absolute importance of all features.

2.2. Zonal source location using deep neural network

In addition to random forest, another passive monitoring sys-
tem based on deep learning is investigated in this study.
As in the system above, it contains the in-flight phase and
the after-flight phase. The workflow of the system is shown
in figure 2. The difference with the system using random
forest is that there is not feature extraction. In the after-
flight phase, the collected raw AE signals are input into the
deep learning model for impact localization. The deep learn-
ing model utilized in this system is a stacked autoencoder
(SAE).

2.2.1. SAE. An autoencoder is a typical ANN which usu-
ally contains three layers: the input layer, the hidden layer,
and the output layer. The number of neurons in the input and
output layers are kept consistent, while the number of neurons
in the hidden layer is usually less than the input and output
layers. The autoencoder algorithm compresses the input data
according to the number of neurons of the hidden layer and
reconstructs the output of compressed data to the output layer
[36]. The compression of input data can be considered as the
extraction of features. The SAE is a deep learning algorithm
based on the stacking technique [37]. The SAE is composed
of multiple autoencoders. The compressed features obtained

Figure 5. Steel ball dropping test.

by the previous autoencoder are employed as the input data of
the following autoencoder.

Assuming the input data for the input layer is defined as
an n-dimensional vector, the process of mapping the input
data to the k (k < n) dimensional vector in the hidden layer
is named as the encoder stage. The process that reconstructs
the k-dimensional vector in the hidden layer to a new n-
dimensional vector in the output layer is named as the decoder
stage. The process of encoder and decoder stages can be
expressed by equations (8) and (9):

G= f
(
we
(i)x

i+ be(i)

)
(8)

x̂i = f
(
wd
(i)x

i+ bd(i)

)
(9)

where G refers to the k-dimensional compressed feature in the
hidden layer, xi is the ith input data from the input dataset,
we
(i) and b

e
(i) are the weight and bias in the encoder stage, x̂i

refers to the ith output data in the output layer, wd
(i) and b

d
(i)

are the weight and bias in the decoder stage, and f(*) is the
sigmoid activation function which is utilized for transforming
the set of neurons in the previous layer into a given neuron
in the subsequence layer [38]. The function is presented in
equation (10):
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Figure 6. Impact and sensor locations.

Figure 7. The architecture of the random forest.

f(x) =
1

1+ e−x
. (10)

The training object of the autoencoder is to minimize the
error between the input data and the output data. An object-
ive function is designed. The optimal parameter set {we

(i), b
e
(i),

wd
(i), b

d
(i)} will be determined in the iterations of the training

process. During the training of SAEs, several autoencoders
are utilized to compress the data. In other words, the data
is compressed several times by multiple autoencoders. The
last autoencoder is connected by a SoftMax layer which is
intended to do the classification based on the final compressed
features. The training process of multiple autoencoders is
unsupervised, while the process of classification by the Soft-
Max layer is supervised by the labels. The workflow of an SAE
is shown in figure 3.

3. Experimental description

3.1. Experimental setup

To evaluate the performance of the systems proposed in
this paper. An impact experiment was conducted in an air-
craft elevator component in a laboratory setting. The elevator
component was mounted on a steel frame structure, which
was fabricated by the 5 inch mild steel channels (6.10 m
long × 0.61 m high). The hinge brackets on the elevator spar
were connected to hinge points located on the frame. To sim-
ulate the flexure of the horizontal tail during the realistic flight
operation, a turnbuckle was employed to create bending in the
elevator component.

A total of three different composite compartments were
manufactured for assembling the elevator. They are pcomp
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81 000, pcomp 81 002 and pcomp 81 003 (figure 4). The lay-up
of each panel compartment is listed in table 1. It is important to
note that each panel consisted of two different materials: 5H
carbon polyphenylene sulfide (PPS) fabric; and plain weave
carbon PPS fabric. In table 1 the 5H carbon PPS fabric plies
are indicated in bold, and the plain weave carbon PPS fabric
plies are indicated using a normal font.

3.2. Steel ball impact experiment

The impact experiment was conducted on the elevator by using
a steel ball. The diameter of the steel ball is 0.013. The weight
of the steel ball is 8.40 g. The distance from the steel ball
to the elevator surface was kept constant at 0.61 m for all of
the impacts (figure 5). The impact energy of the steel sphere
is 0.05 J. The only varying variable during this study was
the locations of impact. There are three ribs in the elevator.
Three impact locations were marked as red points on each rib
(figure 6). A PAC Micro-30 sensor (manufactured by Mistras
Group, Inc., Princeton Junction, NJ) was mounted to the spar
of the elevator. Each impact location was repeatedly impacted
60 times. In total, 3600 impacts were conducted on ribs. AE
signals were collected by the acquisition system during the
experiment.

3.3. Acoustic emission setup

The AE acquisition system is manufactured by MISTRAS
Group, Inc. (Princeton Junction, NJ). The amplitude threshold
was set to 32 dB. The pre-trigger time was set to 256 µs. This
parameter ensures that the acquisition system does not miss
the time attributed to signal initiation. The sampling rate was
set to 2 MHz. The peak definition time (PDT), which refers to
the time from threshold crossing to peak amplitude, was set to
200 µs. This parameter is used to find the peak. It determines
which peak can be applied to calculate rise time and amplitude
when an AE signal has more than one peak. The hit definition
time (HDT)was defined as 400µs in this study. This parameter
determines when to stop the recording of a hit. The record-
ing of the AE signal began when its voltage first exceeded the
amplitude threshold. The recording is stopped at the moment
that an amount of time equal to the HDT has passed without
any threshold crossings. The HDT is typical twice the PDT,
Lastly, the hit lockout time (HLT) was defined as 400 µs. HLT
is a timing parameter to assure that any threshold crossing that
happens during this timewill not be included in a hit waveform
[39].

4. Model configuration selection

4.1. Configuration of random forest

A random forest classification model is utilized in this study
for the purpose of source localization. This random forest
contains 100 decision tree models. The Gini impurity of the
node is used as the branching criterion. The input is a data-
set of 3600 AE samples collected during the impact test. Each
sample contains 15 features that are introduced in section 5.1.
One hundred subsets are randomly selected from the original

Figure 8. Misclassification rate.

input with replacements (bootstrapping) and then transferred
to their own decision trees. The dimensions of each subset are
the same as the original set, but only four features are randomly
collected from 15 features. This is based on a criterion that the
maximum number of features for a single decision tree can
be the square root of the number of original features [40]. In
the training process, the labels used by the decision trees are
the zone number of the corresponding event. These decision
trees work independently and give their own results. A final
source localization result (zone number) is obtained by vot-
ing. Figure 7 shows the random forest algorithm applied in
this paper.

The definition of the number of decision trees is shown in
figure 8. Generally, with the increase of the base model, the
random forest will converge to a lower generalization error
[21].When the number of basemodels exceeds a certain value,
the error of the random forest basically converges. Continuing
to increase the number of trees will not basically reduce the
error. Moreover, it will slow the computing. Therefore, select-
ing an appropriate number is important. Trial-and-error test-
ing was conducted by changing the number of decision trees
from 1 to 200. The input data and corresponding labels are
introduced in section 5.1. The misclassification rates versus
the number of trees are plotted as the blue curve. It can be
observed that the misclassification rates decreased from 0.04
to less than 0.02 when the tree number was increased to 30.
The misclassification rates stay below 0.02 when continuing
to increase the number to 200. The minimal rate is observed as
0.0167 when the number of trees is around 100–105, or 130–
140. To optimize the randommodel for the fastest yet accurate
purpose, the number of decision trees was defined as 100 in
this study.

4.2. Topology of stacked autoencoder

The deep learning model utilized in this paper is an SAE
composed of two autoencoders. Autoencoder 1 has a hidden
layer with 100 neurons, and autoencoder 2 has a hidden
layer with 50 neurons. Different from the random forest,
the raw AE waveforms, and the corresponding Fast Fourier
Transformation (FFT) magnitude of the impact events on the

7
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Figure 9. SAE impact source localization network.

Table 2. Descriptions of the input features for random forest.

Features Descriptions

Amplitude The maximum amplitude at the peak
Count The number of threshold crossings
Rise time Time interval between first threshold crossing and maximum signal decibel
Duration Time between the first and last signal crossing the threshold
Average frequency Counts/duration
Root mean square (RMS) The effective voltage with a characteristic time TRMS for an average ranging between 10 and 1000 ms
Average signal level (ASL) The effective voltage with a characteristic time TASL for an average ranging from 10 to 1000 ms
Energy The measure of the electrical energy measured for an AE signal
Absolute energy The absolute measure of the electrical energy measured for an AE signal
Peak frequency Frequency of maximum signal contribution
Reverberation frequency Frequency after the peak
Initial frequency Frequency before the peak
Signal strength A parameter to evaluate the AE source strength
Frequency centroid A parameter to characterize the overall frequency content of an AE signal
Counts to peak (PCNTS) The number of threshold crossings from the first threshold crossing to the peak

elevator are used as the input data. During the training process,
the labels of the inputs are the zone numbers that are attrib-
uted to each of the AE events. The source localization result is
obtained as the output of this SAE neural network. The topo-
logy of the SAE used in this paper is shown in figure 9.

5. Results and discussion

5.1. Performance of random forest algorithm

5.1.1. Input preparation. The data is collected by the AE
acquisition system during the steel ball impact test. Several
features were extracted from the AE waveforms reconstructed
by Whittaker–Shannon reconstruction. The features are used
to reduce the amount of information carried by the signal to
some specific values. They describe the characteristics of AE
signals. In this study 15 main features were extracted from the
original signals. The features and their descriptions are presen-
ted in table 2. Input samples which contain 3600 samples with
all 15 features are adopted by the proposed random forest
model.

5.1.2. Impact source localization. The previous invest-
igation on which the current study is founded employed
a BP ANN to localize the AE events of impacts. The
elevator was divided into three zones based on the res-
ult of unsupervised pattern recognition [19]. The same
division is utilized in this paper. The zonal divisions
of the elevator are shown in figure 10. From left to
right, the elevator is divided into zone 1, zone 2, and
zone 3.

66.7% of the input samples were employed for training and
the rest 33.3% were utilized for testing. The results are shown
in figure 11(a) as a confusion matrix. As shown in the figure,
223 out of the 226 samples from zone 1 were correctly loc-
alized, while three samples were mistakenly assigned to zone
2. Out of the 474 samples of zone 2, 466 were correctly loc-
alized and eight were classified to zone 3 by error. Out of the
500 samples of zone 3, 491 were correctly localized, while
nine samples were mistakenly classified to zone 2. According
to figure 11(b), the localized recall of zones 1–3 are 98.7%,
98.3%, and 98.2%, respectively. The overall localized accur-
acy is 98.3%.
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Figure 10. Zonal divisions.

Figure 11. Performance of three zone classifications using random forest: (a) confusion matrix; and (b) accuracy of each zone.

Figure 12. Importance of features: (a) ranking of importance, (b) cumulative importance.

5.1.3. Importance of features. According to the approach for
calculating the importance of features, which was introduced
in section 2.2, an important feature analysis was conducted.
The importance of the 15 features is shown in figure 12(a)
in descending order. The abscissa represents the different

feature names. The ordinate indicates the percentage of feature
importance. According to figure 12(a), the ‘Count’, ‘Amp-
litude’, ‘Duration’ and ‘Signal strength’ of the features con-
tribute to a large percentage of their overall importance, which
have a significant impact on the localization results. Features
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Table 3. Comparison of the performance by different input features.

Input Accuracy Computing time (s) Input storage (bytes)

Original input (15 features) 98.3% 0.3 299 008
95% importance (12 features) 97.9% 0.3 200 704
85% importance (9 features) 97.8% 0.2 163 840
75% importance (6 features) 97.8% 0.2 114 688
65% importance (5 features) 97.8% 0.2 90 112

Figure 13. Typical impact inputs: AE waveform (up), FFT magnitude (down).

Table 4. Comparison of the accuracy by different input.

Input Accuracy

AE waveform 73.3%
FFT magnitude 99.2%

‘PCNTS’, ‘Average frequency’, and ‘Peak frequency’ have
relatively low importance. Deleting themwill not lead to a sig-
nificant impact on the localization performance.

Based on the results above, a feature selection can be imple-
mented for model optimization purposes. The computing time
and the required input storage is reduced by reducing the
input features, but accuracy is decreased. The optimum solu-
tion is to reduce as many features as possible while ensuring
as high a performance as possible. The cumulative import-
ance of features is plotted in figure 12(b). The blue region
indicates that the first five features occupy 65% of the over-
all importance. The green region plus the blue region refer
to the six features that have 75% of the importance. The yel-
low, green, and blue regions refer to the nine features with
85% of the importance. All of the 12 features within the
regions with colors (blue, green, yellow, and red) occupy 95%
of the overall importance. Four input samples with 12 fea-
tures (Count, Amplitude, Duration, Signal strength, Energy,
Absolute energy, RMS, Initial frequency, Raise time, ASL,
Reverberation frequency, Frequency centroid), nine features

(Count, Amplitude, Duration, Signal strength, Energy, Abso-
lute energy, RMS, Initial frequency, Raise time), six features
(Count, Amplitude, Duration, Signal strength, Energy, Abso-
lute energy) and five features (Count, Amplitude, Duration,
Signal strength, Energy) were generated and assigned to the
random forest model. Their localization accuracy, computing
time, and required input storage were compared with the res-
ults of the original input. The detail is shown in table 3. It
can be observed that reducing the input features from 15 to
5 slightly decreases the localization accuracy while the CPU
computing time is reduced from 0.3 s to 0.2 s, and the required
storage for input significantly decreases from 299 008 bytes to
90 112 bytes which means 69.9% of the input storage is saved.

5.2. Performance of the deep learning-based passive
monitoring system

5.2.1. Input preparation. In this study, the raw AE wave-
form and its FFT magnitude are considered as the input. A
typical AE waveform of the impact event collected from the
test and its FFT magnitude is presented in figure 13. In order
to compare the performance of these two types of inputs, both
the AE waveform and the FFTmagnitude were assigned to the
SAE network. The same labels for the three zones localization
are utilized. 66.7% of the data was utilized as a training data-
set, and the rest 33.3% was utilized as a testing dataset. The
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Figure 14. Performance of three zone classification using SAE. (a) Confusion matrix, (b) accuracy of each zone.

Table 5. Comparison of the performance.

Input Accuracy
Computing
time (s)

Input storage
(byte)

SAE 99.2% 681.4 458 219 520
Random forest
(15 features)

98.3% 0.3 299 008

Random forest
(12 features)

97.9% 0.3 200 704

Random forest
(9 features)

97.8% 0.2 163 840

Random forest
(6 features)

97.8% 0.2 114 688

Random forest
(5 features)

97.8% 0.2 90 112

BP ANN 96.0% 0.8 299 008

optimum results of several times of training are as shown in
table 4.

It can be observed that the SAE trained by the FFT mag-
nitudes has an overall accuracy of 99.2%, while the SAE
trained by the AE waveforms has an overall accuracy of
73.3%. The reason that the SAE trained by waveform obtained
a low accuracy might be that the AE waveform contains low-
frequency vibration information which is irrelevant to the AE
source. When the feature extraction is carried out by autoen-
coders, the irrelevant vibration features will occupy some pos-
itions of the effective AE features, since the dimension of the
feature set is a fixed number. This leads to the consequence that
the final feature set for SoftMax classification contains unre-
lated vibration features which will greatly decrease the clas-
sification accuracy. The FFT magnitude contains multimodal
and dispersive characteristics of AE and the low-frequency
vibration is not significant in the FFT magnitude. The extrac-
ted feature set carried out by autoencoders has a high purity

of features that have a high correlation with the AE source,
which leads to a better classification performance [41]. There-
fore, the FFT magnitude was utilized as the input in this
paper.

5.2.2. Impact source localization. The FFTmagnitude data-
set was adopted by the SAE network. The same divisions of
zones as in the previous research [15] was applied. 66.7% of
data were used as a training dataset, and 33.3% of data were
used for testing dataset. The result is shown in figure 14 as a
confusion matrix. According to figure 14(a), out of the 300
samples of zone 1, 298 were correctly localized, with one
sample mistakenly assigned to zone 2, and another mistakenly
assigned to zone 3. Out of the 450 samples of zone 2, 418 were
correctly localized, and two samples weremistakenly assigned
to zone 3. Out of the 300 samples of zone 3, 296 were cor-
rectly localized, while four samples were mistakenly assigned
to zone 2. By considering figure 14(b), it can be observed that
the localized recall of zones 1–3 is respectively 99.3%, 99.5%,
and 98.7%. The overall localized accuracy is 99.2%.

5.3. Comparison of the proposed approaches

Based on the previous observation, the accuracy of the
three-zone impact localization by using the BP ANN was
96.0% when the overlap of boundaries in not considered
[20], which is lower than the accuracy of both random forest
(98.3%) and SAE (99.2%). This indicates that SAE has the
best source localization performance among the three meth-
ods. However, in practical applications, data storage size and
computing time are very important evaluation factors. Because
of the frequent impacts that may occur during flight, the
acquisition system collects an enormous amount of AE sig-
nals. Minimizing the size of the data collected in the after-
flight phase, computing time is important in optimizing the

11



Meas. Sci. Technol. 32 (2021) 084013 L Ai et al

passive monitoring system. The accuracy, computing time,
and required input storage for the SAE, random forest, and
BP ANN localization methods are shown in table 5. It can be
observed that the SAE localization network in this study has
the highest accuracy while it requires the longest computing
time (681.4 s) and the largest input storage (458 219 520
bytes). The random forest significantly decreases the comput-
ing time (0.2 s) and input storage (90 112 bytes) when five
features (Count, Amplitude, Signal strength, Energy) are util-
ized as an input, while it has an accuracy (97.8%) a little
lower than SAE (99.2%) and higher than BP ANN (96.0%).
Considering comprehensively, adopting a random forest loc-
alization method with optimized feature selection can greatly
reduce the data storage size and obtain relatively high accur-
acy, which means the random forest-based passive monitor-
ing system could be the optimum option for aircraft impact
monitoring.

6. Conclusions

In this paper, AE-based passive monitoring approaches were
investigated. An AE sensor was designed to be attached to an
aircraft component during flight for the impact AE events col-
lection in the in-flight phase. The collected data was utilized
for impact source localization using random forest and SAE
neural network in the simulated after-flight phase. An impact
experiment was conducted on an aircraft elevator specimen to
validate the efficiency of the proposed methods. A random
forest model was built for AE feature selection and impact
localization. An SAE neural network was also developed for
source localization based on the raw AE signals. The main
conclusions are as follows:

(a) The SAE neural network has the best impact localization
accuracy within SAE, BP ANN and random forest. How-
ever, it requires computing time and data storage much
higher than both BP ANN, and random forest. Random
forest with optimized feature selection led to an acceptable
localization performance with minimal computing time
and input data storage required.

(b) More features lead to better localization performance of
random forest, but the difference is not significant. Select-
ing the features with top importance led to an accept-
able localization performance, meanwhile the comput-
ing time and required data storage were significantly
reduced.

(c) The FFT magnitudes are more appropriate to employed as
the input of the SAE neural network than AE waveforms
because the AE waveform contains complex information
which may reduce the localization performance.

The challenges in the application of the proposed methods
in a real in-flight aircraft can be the interference of noise dur-
ing flight. The difficulty of obtaining a sufficient number of
labeled impact AE signals for training is also a challenge.
Future research could focus on the study of the influence of
noise and on generating training signals by numerical simu-
lation. Another limitation of the proposed approaches in this

paper is that it only provides the large zonal source localiza-
tion results. An investigation of the approach that can obtain
the coordinates of the impact points are recommended as the
subject of future research.

Data availability
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