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ABSTRACT 

 

Impact damage is one of the major threats to the integrity of aircraft control 

surfaces such as wings and elevators. The conventional and widely applied inspection 

approach is visual inspection which is time-consuming and subject to human error. 

The innovation of this paper lies in developing a smart sensing system by leveraging 

acoustic emission (AE) for the real-time detection and evaluation of impact damage on 

aircraft elevators. The challenge of this system is to deploy a minimal number of AE 

sensors on the aircraft due to the environmental restriction during the operation of the 

aircraft while still effectively evaluate the impact damage. A convolutional neural 

network (CNN) is employed to localize the impact and evaluate the damage level by 

analyzing the wavelet of signals obtained by a single AE sensor. The proposed 

approach is verified by an impact test carried out on a thermoplastic aircraft elevator. 

The results demonstrate the efficacy and potential of the proposed approach.  

 

 

INTRODUCTION 

 

One of the most serious risks to the structural integrity of composite aircraft 

components is in-flight impact damage. Impact damage is usually assessed by 

traditional visual assessment. However, this approach takes time and is due to human 

error. Due to recent advances in sensor technology and data processing methods, 

structural health monitoring systems can now be used to automatically locate impact 

and assess the damage. This can be used in conjunction with, or as a partial substitute 

for, manually visual inspection. 

Acoustic emission (AE) is a structural health monitoring technique that is highly 

sensitive to material damage initiation and propagation [1]. Previous research [2-3] 

has looked into the use of AE monitoring for fiber composite materials. Eaton et al. [2] 

used AE to study damage characterization in composite materials. The amplitude ratio 

(MAR) of the two principal Lamb wave modes has been established as a method for 

damage characterization. Shahri et al. [3] used AE to assess the damage of composite 

materials. The authors devised an approach based on the Hilbert transform to correlate 

AE signals to their associated failure mechanisms. 

The application of AE for evaluating the impact on fiber composite materials has 

also been examined [4-5]. Mal et al. [4] applied AE to graphite-epoxy composite 

plates to detect low-velocity impacts. To gain thorough information on the link 

between the impact load and the signals, the response of the plate was approached 

using a modified lamination theory. The findings showed that the impact loading 

could be identified simply from AE signals, and delamination damage may be 

assessed by examining the waveforms of the recorded AE signals. Saeedifar et al. [5] 

used several AE sensors to monitor impact damage in carbon epoxy laminates during 

quasi-static indentation and low-velocity impact. The authors claimed that AE is an 

effective method for detecting the barely visible.  

According to the investigations mentioned above, AE monitoring of the impact on 

fiber composite materials is promising. However, due to environmental restrictions 

during aircraft operation, the issue of applying this approach to aircraft is to put a 

small number of AE sensors (i.e., a single AE sensor) on the aircraft while still 



properly evaluating impact damage. Machine learning techniques could be a viable 

option for resolving the issue. Artificial neural networks (ANN) and random forests 

have been used to localize impact events on aircraft components[6-7]. Soltangharaei et 

al. [6] designed a system to localize impacts on aircraft components using a single AE 

sensor. An ANN model was employed using AE features as inputs, and the source 

localization results were produced as outputs. The results showed that impact 

localization utilizing AE and ANN could achieve respectable results while adhering to 

weight and power constraints. In a later study, Ai et al. [7] further employed a random 

forest technique to study the single sensor impact localization on aircraft components.  

The results suggest that random forest may be able to achieve more significant 

localization than ANN. However, one issue with applying machine learning 

approaches in evaluating aircraft components is that manually selecting feature is 

required. The selection of acceptable features primarily relied on prior experience and 

was challenging, particularly for complicated data sets. 

Adopting deep learning may be an option to resolve the issue. Deep learning has 

the advantage of using raw data as an input set rather than the derived features [8]. 

Therefore, feature extraction and feature selection are not required. In recent years, 

deep learning has been applied in the fields of AE monitoring. Shevchik et al. [9] 

developed an on-site quality monitoring system for additive manufacturing using 

acoustic emission technologies. A spectral convolutional neural network-based AE 

data classification approach was proposed. These findings show that deep learning has 

the potential to improve AE monitoring. In previous research, deep learning was also 

applied in the localization of impact on aircraft components [10]. A passive structural 

health monitoring system for aircraft elevators was proposed. A stacked autoencoder 

neural network was employed to localize the AE signals caused by impacts. However, 

these works only focused on impact localization, while the identification of impact 

damage was not investigated. 

The identification of impact energy levels was investigated in this paper. The AE 

signals caused by the impacts with two different impact energies were recorded. An 

analysis framework was proposed to evaluate the impact energy level and localize the 

impact by leveraging continuous wavelets transform (CWT) and convolutional neural 

network (CNN).  

 

IMPACT DETECTION AND ANALYSIS FRAMEWORK 

 

The identification and evaluation framework of impact on control surface includes 

the in-flight stage and after-flight stage. AE signals are recorded by a single AE sensor 

and saved as time series in the signal storage during the in-flight stage. After the 

operation of the aircraft is finished, the storage signals could be downloaded and 

processed in the after-flight stage. In this paper, the evaluation and localization of 

impact of elevator control surface are based on AE, continuous wavelets transform 

(CWT), and convolutional neural network (CNN). CWT is utilized to extract time-

frequency features and convert the time series AE waveforms into RGB images. A 

CNN model is employed to identify the energy level of the impacts. Once finished, the 

signals in each impact level are assigned to another CNN model to acquire the 

locations of the impact. The different procedures of the in-flight/after-flight stages are 

presented in Figure 1. 



 

Figure 1.  Framework of impact detection and analysis 

 

 

Wavelet Transform  

 

Continuous wavelets transform (CWT) captures the time-frequency properties of 

non-stationary signals, such as AE signals. The Morse wavelet is used as the mother 

wavelet function in this paper to conduct CWT. Eq (1) shows the Fourier transform of 

a Morse wavelet: 

𝛹𝑝,𝛾(𝑥) = 𝑈(𝑥)𝛼𝑝,𝛾𝑥
𝑝2

𝛾 𝑒−𝑥𝛾
                                                                                     (1) 

where 𝑈(𝑥) denotes the unit step, α𝑝,𝛾 denotes the normalizing constant, and 𝑝2 is 

the time-bandwidth product, 𝛾  is the parameter that describes the Morse wavelet's 

symmetry[11]. 𝑝2 and 𝛾 was defined as 60 and 3 in this paper 

The continuous wavelet coefficients can be expressed using a scalogram image. 

CNN models use the 2D scalogram pictures as input. The wavelet coefficients are 

scaled from 0 to 1 in this work. 

 

Convolutional Neural Network 
 

A convolutional neural network (CNN) is a deep neural network containing 

convolutional filters [12]. The input layer, the feature extraction layers, and the fully 

connected layer are the three primary parts of a CNN model. The essential part of the 

feature extraction layers mainly includes convolutional layers and pooling layers. 

Figure 2 depicts the architecture of a typical CNN with two convolutional layers and 

two pooling layers. 
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Figure 2. Architecture of a typical CNN 

 

 In this study, the input dataset is the aforementioned wavelet images dataset. 

Before input datasets, the data is labeled and normalized. Since the AE signals 

available for training in this study are limited, transfer learning based on a pre-trained 

CNN model is utilized to obtain a more robust neural network, in the meantime, 

minimizing the required time for training. The pre-trained CNN model employed in 

this paper is GoogLeNet. The GoogLeNet model is pre-trained by more than a million 

images. In this paper, the low-level layers are freeze because those layers extract the 

general features of images. While the rest of the layers could learn the specific feature 

that is more sensitive to the training data and corresponding labels, the weights of the 

rest layers are kept not to be frozen. Fine-tuning a pre-trained GoogLeNet model with 

transfer learning usually leads to a shorter computing time than training from scratch 

 

 

IMPACT EXPERIMENT 

 

A thermoplastic elevator specimen was utilized in this paper to conduct the impact 

experiment. The elevator is composed of 20 ribs and 20 thermoplastic panels. Figure 4 

illustrates the plane view of the specimen. Two steel balls with varying diameters 

(0.006 and 0.013 meters) were used to impact the elevator specimen to simulate varied 

impact levels that the elevator experienced during the flight. The dropping heights 

were 0.61 meters for both steel balls. 

 

Figure 3. Impact and sensor locations 
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Figure 4. Steel sphere impact procedure 

A plastic guide tube was used to keep the impact locations and the dropping 

heights constantly during the experiment (Figure 4). 0.006 J and 0.05 J are the impact 

energies of two steel balls. In this paper, they are referred to as impact levels 1 and 2. 

Figure 4 shows the impact site on each thermoplastic panel as a red dot. The steel balls 

impacted each dot 60 times. In the meantime, A single AE sensor was attached to the 

front spar of the elevator to monitor the impacts and record the AE signals. In total, 

2,400 AE signals were recorded (1,200 for level 1, and 1,200 for level 2). This paper 

considered impact localization as a classification task. Panels 1 to 5 were defined as 

zone 1, Panels 6 to 10 were defined as zone 2, Panels 11 through 15 were defined as 

zone 3, and panels 16 through 20 were zone 4. The CNN model will classify the input 

AE signals into their corresponding zones. 

The hardware of the AE system was produced by the Mistras Group Inc., 

Princeton Junction, New Jersey. The AE sensor utilized in this experiment is type 

PAC Micro-30 with an operating frequency range of 150 - 400 kHz. AE signals were 

acquired by a 16-channel DiSP system. The pre-trigger time, which recovers AE 

waveforms before the threshold crossing, was defined as 256 μs. The sampling rate 

was 5MHz. The signal length was 2,048 microseconds. The peak definition time 

(PDT), which refers to the time between the first threshold crossing to the peak 

amplitude, was defined as 200 μs, and the hit definition time (HDT) was set to 400 μs. 

This controls the stop point of recording and is usually twice the peak definition time 

[44]. The hit lockout time (HLT), which prevents recording late-arriving signals and 

reflected hits, was set to 400 μs. 

 

 

RESULTS 

       

Because the AE signals acquisition sampling rate was set to 1 MHz and the length 

was set to 2,048 microseconds, each signal is a time series with 2,048 sample points. 

The amplitude of all AE signals was normalized to a range of -1 to 1. Figure 4 shows 

the waveforms of the normalized signals that were randomly selected from each zone. 

The patterns of the AE waveforms in different zones can be seen to be distinct. In 

addition, as illustrated in Figure 4, the AE waveforms were used to construct CWT 

coefficients. The CWT coefficient's Y-axis was then transformed to a logarithmic 

coordinate to display the time-frequency component better. The coefficients were 

Guide tube

Aircraft

Elevator



stored as RGB pictures of 224 × 224 × 3 pixels in size (Figure 4). The resulting RGB 

images were used as the input to the CNN model in the CWT image-based dataset. 

 

 

Figure 5. AE waveforms, CWT coefficient, and CWT RGB images 

After the 2400 AE signals are converted to RGB images, they are assigned to a 

CNN model to identify the impact level. 60% of the images (1440 images) were 

randomly selected as a training set. 10% (240 images) was selected as a validation set. 

The resting 30% (720 images) of the images were utilized as a testing set. The 

optimizer of the CNN model was the Adaptive moment estimation (Adam) method. 

The batch size was 16, the learning rate was 0.0001, and the maximum epochs was 4. 

Figures 6a and 6b present the accuracy and loss curves of the training and validation. 

The training accuracy reached 100%, and the accuracy of training reached 99.72% 

accuracy by the end of iteration 180. Both the losses of training and validation were 

close to 0 in the end. The training and validation reached convergence around iteration 

40, and the curves were stable after converging. The testing results are presented in 

Figure 6 as a confusion matrix. The accuracy for the impact level identification is 

99.9%. All signals of level-I were correctly identified. 399 signals of level 2 were 

successfully identified. Only one were identified to level 2 by error. 

After the impact level was identified, the AE wavelets images of each impact level 

were transferred to another CNN model to conduct the source localization. The ratio 

of training/validation/testing was keeping the same as above. The optimizer of the 

CNN model was the Adaptive moment estimation (Adam) method. The batch size was 

32, the learning rate was 0.0001, and the maximum epochs were 17 for the 

localization of level 1 impacts and 15 for the localization of level 2 impacts. For the 

impacts of level 1, the localization results are shown in the confusion matrix (Figure 

7a). The accuracy is 97.8%. Among tall the 90 signals in zone 1, all signals were 

correctly localized. In zone 2, 86 signals were successfully localized. One signal was 

localized to zone 1, and the other 3 were located to zone 3 by mistake. In zone 3, 88 

signals were successfully localized, one was localized to zone 1, one was located to 

zone 4 by error. 88 signals in zone 4 were located to the correct zone, two signals were 

localized to zone 3 by error. 

For the impacts of level 2, 354 AE signals were correctly located out of the 360 

test signals, and the localization accuracy is 98.3% (Figure 6b). 89 signals in zone 1 

were correctly localized to zone 1, and one was located to zone 2. In zone 2, 86 signals 

were successfully localized, three signal was localized to zone 1, one was located to 
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zone 3 by mistake. In zone 3, all signals were correctly localized. In zone 4, 89 signals 

were located correctly, and the other one was localized to zone 3 by error. 

 

 
(a) (b) 

Figure 6. Impact level identification results: (a) training and validation curves; (b) impact level 

identification 

 

  
(a) (b) 

Figure 6. Localization results: (a) impact localization of impact level 1; (b) impact localization 

of impact level 2 

 

 

CONCLUSIONS 

       

In this paper, The AE signals of two impact energies (impact level 1 and level 2) 

were collected by conducting an impact experiment using steel balls with two different 

diameters. An analysis framework to evaluate the impact energy level and localize the 

impact was proposed by leveraging CNN models. By utilizing AE monitoring and 

CNN, A good performance (99.9%) on the impact level identification can be observed. 

The CNN models could also accomplish the impact localization with high accuracy 

when a single AE sensor is used. Comparing the localization results of the impact of 
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energy level 1 and level 2, the impact with higher energy could acquire a higher 

localization accuracy (98.3%) than the impact with lower energy (97.8%). 
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