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A B S T R A C T   

Automatic inspection for crack detection and estimation of the crack depth is critical in assessing the damage and 
determining the appropriate method of repair in concrete structures. Most of the studies which have employed 
deep learning models for automatic inspection are limited to the detection and estimation of the width, length, 
area, and direction of cracks. The innovation of this study lies in developing a comprehensive automated crack 
detection and crack depth evaluation framework for concrete structures using images taken from portable de-
vices. Firstly, a binary-class Convolutional Neural Network (CNN) model was developed to automatically detect 
the cracks on a concrete surface. Secondly, an integrated CNN model combining the convolutional feature 
extraction layers and regression models (RF and XGBoost) was developed to automatically predict the depth of 
the cracks. The proposed framework has been validated on a reinforced concrete (RC) slab. Results indicate the 
models are accurate and reliable for automated inspection of the cracks which could help in evaluating the 
condition of a concrete structure and choosing suitable repair methods.   

1. Introduction 

Concrete is a widely used component in the construction of in-
frastructures such as bridges, and buildings. Concrete structures degrade 
over time due to harsh environmental conditions, overloading, and 
material deterioration [1–3]. Cracks ranging from micro-cracks to 
macro-cracks are the first sign of distress in these structures. The prop-
agation of the cracks may reduce the strength of the concrete structure 
and may affect its structural integrity [4,5]. Water and corrosive 
chemicals can invade the concrete through these cracks. When the 
cracks reach the rebar level, corrosion of the rebars can be induced. 
Delamination and spalling of the concrete can occur due to the devel-
opment of corrosion, undermining the safety and serviceability of the 
concrete structure [6–8]. Inspection for crack detection in concrete 
structures is crucial to determining the presence of damage and condi-
tion assessment [9,10]. Assessment of the crack depth is vital in deter-
mining the appropriate repair method to prevent substantial damage 
and ensure public safety. 

Inspection of concrete structures is usually accomplished by manual 
visual inspection of concrete surfaces. However, it is time-consuming, 
labor-intensive, and poses a risk to the safety of inspectors [11,12]. 

This method is also subjective to the skills, expertise, and experience of 
the engineers in charge of the inspection. To overcome these limitations, 
automated methods of inspection have been explored using unmanned 
aerial vehicles and machine learning algorithms. Automation in in-
spection has the advantage of being cost-effective, efficient, using less 
labor and reducing the risk of accidents in the workplace [13,14]. 
Moreover, it can be objective and more reliable since the condition 
assessment is designated through a computer algorithm. 

Many studies have investigated the possibility of automated in-
spection of concrete structures using image processing techniques (IPT) 
and deep learning methods. Abdel-Qader et al., (2003) [15] imple-
mented an edge detection method based on the IPT to automatically 
detect the presence of cracks in the images from a concrete bridge. Al-
gorithms for edge detection were analyzed and their effectiveness in 
crack detection was compared with the highest accuracy of 86 % for 
crack identification. However, edge detection methods are susceptible to 
noise in the image caused by texture, shadows, blemishes, and illumi-
nation because of the sharp change in brightness [16]. A percolation- 
based technique of image processing was proposed for crack detection 
[17]. As the method depends on the shape and brightness of the cracks, 
it could detect long cracks, but small and unclear ones were detected as 
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noise. Image binarization was implemented for the identification of 
cracks in the image of a concrete surface and to estimate the width of the 
crack [18]. Although crack widths were estimated with an error of less 
than 11 %, the method was not able to detect small cracks present in the 
blurred images. Kim et al., (2017) [19] applied a hybrid image binar-
ization technique to detect small cracks and extract the width and length 
of the crack. However, there is no standardized method to set a threshold 
and choose the best parameters for feature extraction making it a 
tedious, inefficient, and costly process. 

To overcome the limitations of IPTs, deep learning has been 
employed for the automated inspection of cracks in concrete structures 
[20–22]. It is capable of automatically extracting features from images 
and detecting defects with greater accuracy and robustness than tradi-
tional IPTs [23,24]. A deep learning method, CNN, is efficient for image 
classification [25–27]. It can differentiate and accurately classify images 
belonging to multiple classes. It is successful in large-scale object 
detection problems and requires lower computations [28–30]. The in-
tegrated CNN, developed based on CNN, is a hybrid deep learning al-
gorithm where CNNs are integrated with alternate classifiers to detect 
and quantify cracks in concrete surfaces [31,32]. Random Forest (RF) 
and extreme gradient boosting (XGBoost) are used as the alternate 
classifiers for crack inspection due to their simplicity, effectiveness, ease 
of implementation, and outstanding generalization performance 
[33,34]. 

In concrete structures, CNNs and integrated CNNs have shown suc-
cess in the detection and quantification of cracks [35,36]. Cha et al. 
(2017) [37] implemented CNNs for crack detection and compared their 
performance with traditional methods. The Sobel and Canny edge 
detection algorithms produced no meaningful results, an elevated level 
of noise, and inaccurate results in detecting the crack. These techniques 
were found to be dependent on lighting conditions and the shape of the 
crack. CNN showed better performance under different lighting condi-
tions and produced clear information on the cracks. Kim and Cho (2018) 
[38] proposed an automated crack detection method to classify concrete 
surface images obtained from the site based on CNNs and transfer 
learning. A CNN classifier was developed that had an accuracy of 98 % 
during validation. To verify its effectiveness, images taken from an on- 
site concrete structure using smartphone and DSLR cameras were eval-
uated. An average accuracy of 97 %, was achieved for all the test images. 
A CNN architecture was used to classify the concrete damage from the 
images collected from the internet [39]. Images were preprocessed 
based on their suitability; a larger dataset was obtained by data 
augmentation. A pre-trained model based on CNN classified these im-
ages with an accuracy of 92.57 %. A CNN integrated with an RF classifier 
was used for crack detection in concrete structures [40]. The CNN with a 
softmax layer detected the cracks with an accuracy of 88 %, while the 
integrated CNN had an accuracy of 89 % for crack detection. 

Along with the detection of cracks in the images, quantitative in-
formation about the crack, such as its length, width, depth, and orien-
tation, is required to investigate and make an informed decision on the 
level of the damage [41–43]. Teng and Chen (2022) [44] proposed a fast 
and high-performing CNN model for detecting cracks and calculating the 
physical features, such as length, width, area, and cracking ratio. The 
proposed model detected the presence of the crack with an accuracy of 
96.5 % for images with cracks and 98.7 % for images without cracks. The 
CNN model quantified the crack features, with an error of 7 % in 
determining length, 2 % in extracting average width, 22 % in measuring 
maximum width, 27 % in finding the area, and 25 % in quantifying 
cracking ratio. Zhao et al., (2022) [45] implemented feature pyramid 
networks (FPN) for the quantification of the crack in the concrete 
structure. Crack-FPN effectively detected cracks having different widths 
and estimated the width of the cracks with an error of 5 %. An automatic 
method based on CNN was developed to calculate the width of the 
cracks from the images collected from the concrete structure [46]. The 
method is highly accurate in calculating the width of the crack, with a 
relative error of 3.87 %. 

Automatic inspection for crack detection is important in assessing 
the condition of a concrete structure [47,48]. Inspection of the depth of 
the crack is important to determine its structural integrity. The depth of 
the concrete crack is also necessary to determine and apply an appro-
priate repair technique (surface treatment using coatings or surface 
sealers, injecting epoxy or grouts, or an extensive repair with replace-
ment concrete or shotcrete) to avoid further damage to the concrete 
structure. Various algorithms based on IPTs have been developed and 
implemented for inspection. To address the limitations of traditional 
IPTs, CNN, and integrated CNN have been used for concrete crack in-
spection and quantification. However, these algorithms have only 
focused on crack detection and the determination of the length, width, 
area, and orientation of the crack. To the best of the author’s, knowl-
edge, there are no autonomous inspection techniques that estimate the 
depth of the crack from the images of concrete structures. To fill this gap, 
this study aims to explore the possibility of using a CNN model to 
automatically detect the presence of cracks and develop an integrated 
CNN model with regression models to predict the depth of the crack. 

2. Overview of the complete framework 

Detecting cracks and estimating the depth of the cracks are critical 
steps in preventing further damage and ensuring public safety. This 
study focuses on the autonomous inspection of concrete cracks without 
the need for human intervention while improving efficiency, rationality, 
and accuracy. Machine learning methods (CNN, RF, and XGBoost) are 
explored to develop a comprehensive framework to detect cracks and 
predict the depth of the crack. 

First, images of concrete surfaces are obtained from a public data-
base. A binary-class CNN model was trained, validated, and tested on 
these images for crack detection. An accurate model was developed 
which was then implemented to detect the cracks from the images 
collected from a damaged RC slab. The reliability of the developed 
model is checked by evaluating its performance in classifying these new 
images. 

An integrated CNN model with regression models is developed for 
crack depth prediction. The first network for crack detection uses a CNN 
architecture to extract and learns the features from the images of the 
concrete surface and classifies the images to their respective labels. The 
second network for crack depth prediction uses the same CNN archi-
tecture to extract the features from the images of concrete surfaces. The 
images with known crack depths are linked to their corresponding crack 
depths. The alternate classifiers, Random Forest and XGBoost are then 
used to train, validate and test the images for depth prediction. 

A framework with two models for crack detection and crack depth 

Fig. 1. Overview of the complete framework.  
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prediction is developed as illustrated in Fig. 1. 

3. Machine learning models 

3.1. Convolutional neural network model 

A CNN model is developed for the classification of images by feature 
extraction and learning [49,50]. It consists of an input layer, feature 
extraction and classification layers of CNN architecture, and an output 
layer, as shown in Fig. 2. The image dataset is fed to the model in the 
input layer. The images go through the CNN architecture, where the 
features are extracted and learned by the neural network. The features of 
the images are interpreted by the last layer and classified into the 
respective output labels. 

A CNN architecture is comprised of a convolution layer, pooling 
layer, activation layer, auxiliary layer, fully connected layer, and soft-
max layer. A convolution layer consists of a kernel that is multiplied on 
an element-to-element basis with an input image. It slides with a pre-
determined slide on the image regions, extracting the features from an 
input image to create a feature map. The feature map then goes to the 
pooling layer for additional feature extraction and data filtering. The 
layer reduces the size of the feature map and lowers the cost of 
computation by taking maximum values or mean values, referred to as 
“max pooling” and “mean pooling“, respectively. Nonlinearity in the 
architecture to extract the nonlinear features and improve the CNN ar-
chitecture is introduced in the activation layer. Sigmoid, tanh, and 
rectified linear unit (ReLU) are some of the typical nonlinear activation 
functions. Auxiliary layers consist of drop-out layers and batch 
normalization to overcome the issue of overfitting and train the image 
dataset efficiently and effectively. The fully connected layer flattens the 
extracted features to a single vector and produces a label for the image. 
The softmax layer predicts the class labels and classifies the input image 
to their respective labels based on their features. 

3.2. An integrated CNN model 

An integrated CNN model consists of a CNN architecture that is in-
tegrated with a regression model. Input data is fed into the CNN archi-
tecture, which extracts data features. These features with their 
corresponding labels are input into the regression models. The labels are 
important in feeding the regression model so that the model can un-
derstand the relationship between the independent and dependent 
variables. The independent variables input into the regression models in 
this case are the features from extracted by CNN architecture, and the 
outputs are the predicted labels, which are the depths of the cracks. The 
regression models utilized in this study are Random Forest and Extreme 
Gradient Boosting (XGBoost). Details of the regression models are pre-
sented in Sections 3.3 and 3.4. 

3.3. Random Forest 

Random Forest is an ensemble learning method leveraging the 
bagging technique [51,52]. The model combines the mean and average 
forecasts of numerous decision trees to produce more accurate pre-
dictions than a single model or tree. In this study, the bootstrapping 
process is used to construct an input dataset for each decision tree by 
randomly selecting data from the features dataset extracted by the CNN 
structure. Some samples may be chosen frequently, while others may not 
be chosen at all. As a result, the input data for each tree is unique. This 
increases the diversity of the individual decision trees. Taking a vote or 
averaging the results generated by these decision trees can reduce the 
risk of overfitting from a single decision tree when the final prediction is 
made. The structure of the RF model is illustrated in Fig. 3. 

3.4. Extreme gradient boosting 

XGBoost is another type of ensemble technique that utilizes the 
gradient boosting technique [53,54]. Boosting is a technique that re-
duces the bias of the model in training and minimizes overall prediction 
error. The decision trees in XGBoost are created in sequential order, and 
the weight of the variables for each ensemble member is not the same 
throughout, whereas the weights in bagging in RF were the same. As 
more decision trees are added, the model focuses on the variables that 
produced errors and places a higher weight on those variables. The focus 
is on the higher weight variables which are then fed again to a subse-
quent decision tree to fit and correct the prediction errors made in the 
previous model. The residuals from the previous trees are used in the 
subsequent trees to rectify the performance of the model. The sum of the 
results of all the trees is used to make the final prediction. The structure 
of a XGBoost is shown in Fig. 4. 

4. Execution and performance evaluation of the models 

Keras and TensorFlow were used to develop and implement the deep 
learning models in this study. Keras was selected because the framework 
is easy to use and it also gives clear feedback when there is a user error, 
so it makes it easy to learn [55]. 

A training and validation loss plot, a training and validation accuracy 
plot, and a confusion matrix obtained from the CNN model are plotted. 
These plots are used to analyze the performance of the model for crack 
detection. 

The training and validation loss plot measures how well the model 

Fig. 2. Overall architecture of a CNN model.  Fig. 3. Architecture of a RF.  
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fits the training and validation dataset. The training loss shows how well 
the model fits the training dataset and the validation loss shows how 
well the model fits new data. The classification model’s training and 
validation accuracy track the training and validation accuracy across 
epochs. Confusion matrices show the actual values versus the predicted 
values in solving classification problems. Recall, precision, and overall 
accuracy are calculated to evaluate the performance of the model. Recall 
is the ratio of the number of images correctly classified to a data label to 
the total number of images in that label. Precision is the ratio of the 
number of images correctly classified to a data label to the total number 
of images classified to that label. The accuracy is the ratio of the total 
number of correctly classified images to the total number of images. 

For the analysis of the results, two metrics, mean square error (MSE), 
and correlation coefficient (R2) values are used. A plot of actual versus 
predicted values is also produced to compare the accuracy of the pre-
dictions to the actual values. The MSE represents the average of the 
squared distance between the original and predicted values in the 
dataset, and it measures the variance of the residuals. Residuals are how 
far away the data points are in respect to the regression line. The R2 

value represents how well the model accounts for the variance to see 
how many points fall onto the regression line, so the higher the R2 value, 
the better the predictions. 

5. Development of a binary-class CNN model for crack detection 

Images of concrete surfaces were obtained from a public dataset. A 
binary-class CNN model is developed for the classification of the images 
based on the presence of a crack. An optimized, accurate model is ob-
tained by training, validating, and testing the model on these images for 
crack detection. The summary of the process for crack detection is 
presented in Fig. 5. 

5.1. Image database 

For crack detection, a binary-class CNN model was developed to 
recognize the features of images with and without cracks. An online 

public dataset containing images of concrete surfaces with and without 
cracks was used for training, validating, and testing the model. These 
images were captured in campus buildings at the Middle East Technical 
University and retrieved from Kaggle [56]. There are 40,000 images of 
227x227 pixel resolution with RGB channels. These images were split 
into two sets: the images without cracks are labeled “Undamaged,” and 
the images with cracks are labeled “Cracked.” Each set contains 20,000 
images. Some of the typical images with and without cracks that are 
used in the study are exhibited in Fig. 6. 

5.2. Binary-class CNN model 

In the model, the dimension of the input layer is 120 × 120 × 3, 
where 120 is the target size of images and three represents the red, 
green, and blue color modes. The dimension of the input layer was 
reduced to 120 × 120 to improve efficiency and reduce the computa-
tional time of the model. The kernel size of 3x3 was selected to limit the 
number of unrelated features that could be filtered. The filter size is 
sixteen and thirty-two for the first and second layer, respectively. In the 
first layer, sixteen lower-level features (edges or lines in the image) are 
extracted. In the second layer, thirty-two higher level features (crack 
patterns, shapes, and sizes) are extracted from the previous sixteen 
features. The maximum element from the region of the feature map 
under the filter was calculated using a max pooling layer; the result of 
the max pooling layer provides a feature map containing the most 
prominent features from the preceding feature map. A feature map is the 
outcome of extracting features from input photos using the filter. A 
global average pooling layer was also used, which computes the average 
value of all feature map elements [57]. The Adaptive Moment Optimi-
zation (Adam) optimizer is one of the two arguments needed to compile 
the Keras model. The Adam optimizer was chosen for its adaptability to 
smaller datasets, faster computational time, and fewer parameter needs 
for tuning [58]. The final activation function used was the sigmoid 
function. Binary cross entropy was used for the loss function, which is 
specifically tuned for binary classification [59]. After the model is 
compiled, the model is fitted to the training set. 

5.3. Results of crack detection 

A binary-class CNN model is developed with the images of the con-
crete surfaces as the input, a CNN architecture for feature extraction and 
classification, and an output layer that assigns the image output labels 
(Fig. 7). The model was trained with 22,400 images, validated with 
5,600 images, and tested with 12,000 images. The images are fed to the 
model, which extracts and learns the respective features and classifies 
the images to their respective labels— “Undamaged” and “Crack.” 

The training and validation loss plot in Fig. 8(a) demonstrates that 
the model is well-fitted to the new data in the validation dataset; 
therefore, the binary-class CNN model produced fine results for crack 
detection. The training loss is lower than the validation loss, which is 
expected because the validation data set is new, so it does not perform 
better than the training dataset. As the number of epochs increases, the 
training and validation loss both decrease; therefore, the model is better 
fitting as the number of epochs increases. 

The training and validation accuracy increases as the number of 
epochs increases (Fig. 8 (b)). The validation accuracy is slightly lower 
than the training accuracy and does not vary. It indicates that the model 

Fig. 4. Architecture of a XGBoost.  

Fig. 5. Summary of crack detection.  

K.C. Laxman et al.                                                                                                                                                                                                                             



Construction and Building Materials 370 (2023) 130709

5

is accurate in classifying new data in the validation dataset based on 
what it learned in the training dataset. Both accuracies are converging to 
one as the epochs increase, so it shows that the training dataset trained 
the model well and produced accurate predictions for crack detection in 
the validation dataset. These graphs demonstrate that the binary clas-
sification model produces reliable results in detecting the cracks in the 
input images. 

The trained model is tested with 12,000 images from the image 
dataset. A confusion matrix shown in Fig. 9 demonstrates the accuracy of 
the predictions. Out of 6,000 images labeled as Undamaged, the model 
correctly predicted 5,996 images as “Undamaged”, whereas 4 images 
were incorrectly classified as “Cracked”. Out of 6,000 images labeled as 
“Cracked”, the model correctly predicted 5,992 images as Cracked and 
incorrectly classified 8 images as “Undamaged”. A total of 11,988 im-
ages out of 12,000 were correctly predicted by the binary-class CNN 
model producing a test accuracy of 99.9 % on crack detection. 

6. Implementation of the binary-class CNN model 

The binary-class CNN model developed for crack detection is 
implemented for crack detection in the new images acquired from a slab 
tested in the lab. The reliability of the model is investigated by testing 
the model with the new images obtained from the slab. The summary of 
the process is shown in Fig. 10. 

6.1. Image database 

A slab with length, width, and depth of 427 cm, 152 cm, and 21 cm 
was tested under monotonic loading in the laboratory at the University 
of South Carolina (Fig. 11 (a)). The loading procedure generated cracks 
in the slabs. The cracks were of varying lengths, widths, depths, and 
shapes (Fig. 11 (b)). The images of the surface of the slab with and 
without the cracks were taken using a cell phone. Some of the typical 
images are shown in Fig. 12 (a) and Fig. 12 (b). 2,574 images of the 
concrete surface were equally divided into two folders namely, 

Fig. 6. Representation of images from Kaggle (a) without cracks, Undamaged (b) with cracks, Cracked [42].  

Fig. 7. Development of a binary-class CNN model for crack detection on the images from Kaggle [42].  

Fig. 8. Relationship of (a) Training and Validation Loss (b) Training and Validation Accuracy.  
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“Undamaged” and “Cracked”, based on the presence of the crack in the 
images. These images were then input to the binary-class CNN model for 
classification. The reliability of the model was checked based on its 
ability to classify the new images. 

6.2. Results for the implementation of the binary-class CNN model for 
crack detection 

The model was implemented to classify the images obtained from the 
damaged slab (Fig. 13). Images obtained in the lab were input into the 
model that assigned them their respective labels based on the presence 
of cracks. The model classified 2,574 images and assigned the images 
“Undamaged” or “Cracked”. The ability of the model to classify these 
new images was used to evaluate the reliability of the model. 

A confusion matrix shown in Fig. 14 demonstrates the performance 
of the binary-class CNN model. Out of 1,287 images labeled as Un-
damaged, the model correctly predicted 1,132 images as “Undamaged” 
whereas, 155 images were incorrectly classified as “Cracked”. Out of 
6,000 images labeled as “Cracked”, the model correctly predicted 1,280 
images as “Cracked” and incorrectly classified seven images as “Un-
damaged”. A total of 2,412 images out of 2,574 images were correctly 

Fig. 9. Confusion Matrix of the binary-class CNN model during development.  

Fig. 10. Summary of crack detection.  

Fig. 11. (a) Test setup of the RC slab (b) Damaged condition of the slab after the test.  

Fig. 12. Images obtained from the damaged RC slab (a) without cracks (b) with cracks.  

K.C. Laxman et al.                                                                                                                                                                                                                             



Construction and Building Materials 370 (2023) 130709

7

predicted, with an accuracy of 93.7 % in classifying the new images 
taken from the damaged RC slab. Hence, a reliable model was developed 
with an accuracy of 93 % to detect the presence of cracks. 

In the study, a binary-class CNN model was developed for automatic 
crack detection. The model was developed by training and testing the 
images in a public dataset. Since the dataset has smooth images with 
perfect lighting conditions and without any noise, the model has high 
accuracy. To check the reliability of the developed model, it was 
implemented for the automatic detection of cracks in the images 
collected from a damaged RC slab. Even though the model was not 
trained or tested on these images, it could classify the images with an 
accuracy of more than 90 %. Hence, the model is reliable to be used for 
the automatic detection of cracks in the RC slabs. 

7. Development of an integrated CNN model for crack depth 
prediction 

After the crack detection, an integrated CNN model with regression 
models is used to predict the depth of the crack in the concrete images. 
The image dataset generated with the images from the damaged RC slab 
in the lab is used to develop the model for crack depth prediction. The 
images associated with their respective crack depths are used to train the 
models. The features of the images are extracted using a CNN model. 
These features are then fed to the regression models, which learn the 
trends for crack depth prediction. The two regression models that are 

implemented in the study are: RF and XGBoost. The extracted features 
were used for training the model, making the predictions, and adjusting 
weights according to the data values to achieve higher accuracy. The 
process to obtain a model for crack depth prediction is illustrated in 
Fig. 15. 

7.1. Image database 

The image database was created with the images taken from the RC 
slab tested in the lab. There are multiple cracks of varying lengths and 
depths running along the surface of the slab. The cracks spanned across 
the width of the slab, so the lengths of the cracks are 130 cm to 152 cm 
inches long. The cracks were measured at the deepest part; however, the 
cracks do not have a uniform depth and varies throughout the length of 
the crack. 

On each of the primary cracks, four secondary cracks (i.e., smaller 
cracks that stem or propagate from the primary crack) are chosen and 
labeled with decimals such that the secondary crack on the primary 
crack is labeled 1.1 to 1.4. This is demonstrated in Fig. 16. 

Each primary and secondary crack is manually annotated to record 
the depth of the crack at a certain point. It was measured by taking a slip 
of paper and inserting it into the crack until it reached the bottom and 
marking it; then the length of the submerged part of the paper was 
measured. This process was repeated for five times in each place and the 
maximum depth of the crack was obtained. The repetition of the process 
was done to minimize the error and guarantee the depth estimation 
results. The depth values of each crack with its reference are depicted in 
Table 1. 

Images of the concrete surface were collected from an RC slab using a 
cell phone. The phone was kept horizontally at 1.5 feet away from the 
surface of the cracks while taking the images. The images were taken 
during the day with sufficient lighting conditions. A total of fifteen raw 
images of the cracks in the slab were taken with an original pixel reso-
lution of 3024 × 4032. The cracks chosen on the slab had varying depths 
to account for a wider range in the dataset of images. This was done to 
increase accuracy for a better representation of the model with the 
cracks. Four primary cracks were chosen and labeled 1 to 4. 

The fifteen raw images were cropped into smaller images to extract 
individual cracks from the large group of cracks and expanded to 
generate a larger database of images, as shown in Fig. 17. From the raw 
images, the individual primary and secondary cracks were cropped into 
smaller images, with the single crack itself. This process was repeated for 
all the raw images. This is done for the primary and secondary cracks of 
a crack and is demonstrated in the figure below. 

The preprocessed dataset of the images of the slab is used in the 
integrated CNN model for crack depth prediction. After preprocessing 
and generating the dataset of images, the images of the crack with their 

Fig. 13. Implementation of a binary-class CNN model for crack detection.  

Fig. 14. Confusion Matrix of the binary-class CNN model during 
implementation. 
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corresponding depths were used to train the integrated CNN model to 
recognize the features and predict the depth of the crack. 

7.2. An integrated CNN model for crack depth prediction 

The image dataset of the cracks with their corresponding depths is 
fed into a CNN model. The feature extraction layer of the CNN model 
extracts the features from the images. These features are input to the 
regression models for training and testing. The depth of the crack is 
predicted by the integrated CNN model (Fig. 18). 

7.3. Results of an integrated CNN model for crack depth prediction 

Two plots were created to show the relationship between the actual 
values and predicted values of crack depth using RF and XGBoost 
(Fig. 19). The figures show the relationship between the predicted depth 
values of the crack from the model and the actual known values. The 
closer the points are to the regression line, the more accurate the pre-
dictions are. Since XGBoost had the higher R2 value, it indicates that 
more points in the plot of XGBoost are closer to the line of regression 
compared to the plot of actual versus predicted in RF. 

The metric results for both models are shown in Table 2. The 
regression models were compared for their ability to predict the depth of 
the cracks from a dataset of images with known crack depths. Both 

Fig. 15. Crack depth prediction.  

Fig. 16. Visual representation of primary crack and secondary cracks.  
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models produced satisfactory results with a MSE of 14.3 % and R2 value 
of 0.88 for RF, and a MSE of 14 % and R2 value of 0.89 for XGBoost while 
predicting the depth of the cracks. Both models are reliable in predicting 
crack depths from the images. 

An integrated CNN model was developed for crack depth prediction. 
The model can predict the depth of the cracks from the images. The 
depth of the crack can be used to decide on an appropriate repair 
method. If a crack is shallow, it may be possible to repair it using a 
surface treatment method. If the crack is deeper, more extensive 

methods may be opted for repair. 

8. Summary and conclusions 

A comprehensive framework implementing deep learning models 
was developed in the study for the inspection of RC structures for crack 
detection in the concrete surface and crack depth prediction. Images 
from a public dataset and images taken from a RC slab using a phone 
camera were utilized for training, validation, and testing the deep 
learning models. A binary-class CNN model was developed and imple-
mented to detect the cracks in the images of concrete. Based on the 
features obtained from the feature extraction layer of the CNN model, an 
integrated CNN model with regression models, RF and XGBoost, was 
developed to predict the depth of the crack. The conclusions of the study 
are listed below:  

1. A binary-class CNN model can be implemented to automatically 
detect the presence of cracks in RC structures. The model obtained an 
accuracy of 99.9 % on the public image dataset. In addition, the 
model trained on the public dataset could also detect the cracks on a 
damaged RC slab in the laboratory with an accuracy of 93.7 %, 
indicating a good generalization ability to implement it on a 
damaged structure.  

2. An integrated CNN model can be employed to automatically predict 
the depth of the cracks in the images of RC structures. An integrated 
CNN model with RF predicted the depths of the cracks from the 
dataset with the MSE and R2 values of 14.3 % and 0.88, respectively. 
Using an integrated CNN model with XGBoost the depths of the 
cracks from the dataset were predicted with the MSE and R2 values of 
14 % and 0.89, respectively. 

Table 1 
Measurements of Crack Depths.  

Crack Reference Crack Depth (cm) 

1 1.1 
1.1 0.1 
1.2 2.5 
1.3 0.2 
1.4 1.8 
2 3.1 
2.1 1.5 
2.2 3.3 
2.3 2 
2.4 0.1 
3 1 
3.1 1.2 
3.2 0.1 
3.3 0.5 
3.4 2.1 
4 0.4 
4.1 1.4 
4.2 2.3 
4.3 1.4 
4.4 2.5  

Fig. 17. Image Dataset.  

Fig. 18. Development of an Integrated CNN model for crack depth prediction.  
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The current study has some limitations. The models were trained to 
detect and predict the crack depths generated by monotonic loading 
only. Studies are needed to validate the model on cracks generated due 
to other types of loadings such as cyclic loading. The models were 
trained and tested on an image dataset with a limited number of images, 
taken under good lighting conditions and with background noise elim-
inated. It is recommended that future studies consider a variety of illu-
mination conditions and background noise. In this study, the maximum 
crack depth was assumed to be uniform along the length of the crack. 
However, the depth of the crack may vary along its length. More studies 
are needed in the future to investigate the actual crack depth along the 
crack length direction. 
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