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Abstract 8 

Benefitting from their prominent corrosion inhibition properties, excellent water solubility and benign 9 

environmental friendliness, carbon dots (CDs) have functioned as an ideal candidate for next-generation green 10 

corrosion inhibitors. However, the extensive adoption of the trial-and-error route driven by artificial 11 

experience in the preparation of CDs-based corrosion inhibitors leads to resource waste and environmental 12 

implications, detrimental to their sustainable development. It is still a considerable challenge to controllably 13 

prepare CDs-based corrosion inhibitors with the predictable inhibition efficiency. Herein, firstly exploiting a 14 

data-driven machine learning (ML) approach, this study aims to precisely predict the inhibition efficiency of 15 

CDs and optimize their synthesis route, resulting in the controlled synthesis of CDs-based corrosion inhibitors. 16 

Specifically, the dataset is constructed by combining 102 data points on CDs synthesis and inhibition 17 

efficiency from numerous published studies and our own experiments. After training and evaluation of 18 

different ML models, the Random Forest (RF) ML regression model is chosen with the lowest root-mean-19 
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square error and mean absolute error as well as the highest coefficient of determination. The results show that 20 

this RF model can comprehensively reveal the relationship between various hydrothermal synthesis 21 

parameters and the inhibition efficiency. Guided by the RF model, the inhibition efficiencies of CDs-based 22 

corrosion inhibitors are accurately predicted with an error less than 10%, and based on the genetic algorithm, 23 

their synthesis route is intelligently optimized. This work demonstrates the feasibility of ML techniques in 24 

guiding the optimization of synthesis conditions for CDs-based corrosion inhibitors. This optimization process 25 

results in reduced development time and cost, contributing to the sustainability and cleaner production of 26 

inhibitors. 27 

 28 

Key Words: Carbon dots; Corrosion inhibitor; Machine learning; Inhibition efficiency. 29 
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1. Introduction 30 

Metal corrosion severely threatens the safety of metallic equipment, and critically aggravates 31 

environmental pollution and economic losses, thus always serving as one of the most concerned topics of 32 

mankind (Long et al., 2022b; Madlangbayan et al., 2021). How to effectively protect metal from corrosion is 33 

always a typical hot and difficult problem (Astuti et al., 2022). As a cost-effective, simple and high-efficiency 34 

approach, corrosion inhibitors have attracted significant attention and extensively employed to mitigate the 35 

metallic corrosion rate. Conventional corrosion inhibitors containing toxic elements tend to damage human 36 

health and pollute the environment (He et al., 2022a). Hence, massive efforts have been made to develop 37 

environmentally-friendly green corrosion inhibitors (He et al., 2022a; Kobzar and Fatyeyeva, 2021; Tan et al., 38 

2021). Among them, carbon dots (CDs) are considered as one of the most promising candidates for next-39 

generation green corrosion inhibitors, owing to their prominent corrosion inhibition properties, excellent water 40 

solubility, benign environmental friendliness, high chemical inertness, easily available precursors and various 41 

synthetic methods (Cui et al., 2017; He et al., 2022a; Li and Gong, 2022; Li et al., 2023; Long et al., 2022a; 42 

Long et al., 2022b; Qiang et al., 2019; Ren et al., 2022; Ye, Yuwei et al., 2020; Ye, Y. et al., 2020). Up to now, 43 

CDs have demonstrated remarkable inhibition effects for various metals in acid/salt corrosive solution (Cui et 44 

al., 2017; He et al., 2022a; Long et al., 2022a; Long et al., 2022b; Qiang et al., 2019; Ren et al., 2022; Ye, 45 

Yuwei et al., 2020; Ye, Y. et al., 2020). To fabricate CDs-based corrosion inhibitors, diverse one-step methods 46 

such as hydrothermal/solvothermal synthesis (Cen et al., 2019; Cui et al., 2017; Long et al., 2022b; Qiang et 47 

al., 2019; Ren et al., 2022; Ye, Yuwei et al., 2020; Zhao et al., 2022; Zheng et al., 2023), pyrolysis reaction 48 

(Ye, Y. et al., 2020), chemical oxidation method (He et al., 2022a) and Schiff base reaction (Long et al., 2022a) 49 

have been developed. Among them, by virtue of facile manipulation, easily available raw materials and no 50 

need of special equipment, hydrothermal/solvothermal approach has acted as the preferred way to synthesize 51 
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CDs (He et al., 2022b; Wang et al., 2022). Therefore, to efficiently obtain CDs with the high inhibition 52 

efficiency, identifying hydrothermal reaction parameters affecting the inhibition performance of CDs is 53 

urgently necessary. 54 

At present, the trial-and-error approach is widely employed to prepare CDs-based corrosion inhibitors. 55 

Since this traditional method is driven by artificial experience, it suffers from inherent shortcomings including 56 

randomness, subjectivity and contingency. In detail, to obtain CDs with desirable inhibition efficiency, a large 57 

number of random synthetic experiments and screening processes are required, resulting in a low synthesis 58 

efficiency. Even for the most experienced researchers, they also cannot directly provide reasonable 59 

hydrothermal reaction parameters to generate CDs with the desired inhibition characteristic. For example, 60 

He’s group (He et al., 2022a) used the green hydrothermal treatment to synthesize the biomass-derived CDs 61 

as an efficient corrosion inhibitor. And Guo’s group (Zhu et al., 2022) adopted a hydrothermal method to 62 

obtain N-doped CDs, and demonstrated the outstanding inhibition behavior of these CDs for carbon steel. 63 

Although the reported studies above successfully prepare the different CDs-based inhibitors, the hydrothermal 64 

parameters are randomly selected. Thus, there is a high probability that the formed CDs do not possess the 65 

best inhibiting performance. If CDs-based corrosion inhibitors are only blindly prepared without predictable 66 

design and controlled synthesis, it will undoubtedly lead to invalid synthetic experiments, tremendous costs 67 

and potential environmental risk. As is well-known, the characteristics of the final CDs products are 68 

determined by precisely defined synthetic parameters (Wang et al., 2021). However, the hidden rule between 69 

hydrothermal synthesis conditions and inhibition behaviors of CDs is still unknown. This gives rise to failing 70 

to controllably prepare CDs-based corrosion inhibitors with the predictable inhibition efficiency. As a result, 71 

it is highly urgent to develop a feasible strategy to comprehensively reveal the correlation between 72 

hydrothermal reaction parameters and inhibition performance of CDs, thereby achieving predictable design 73 
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and controlled synthesis of CDs-based corrosion inhibitors. 74 

As a subtopic of artificial intelligence technology, machine learning (ML) has made enormous progress 75 

in recent years, which can efficiently process large amounts of experimental and computationally simulated 76 

data to fully mine the hidden information in the data. This superiority enables ML to be widely applied in 77 

various research fields including strength prediction (Li and Song, 2023), damage evaluation (Ai et al., 2022), 78 

structural health monitoring (Ai et al., 2023), chemical reactions monitoring (Meuwly, 2021), transportation 79 

network detection (Sun et al., 2023), imaging analysis (Flah et al., 2020; Hao et al., 2023) and materials 80 

performance optimization (Tran and Ulissi, 2018). Especially for the development of novel materials, ML 81 

with a strong adaptability shows high prediction accuracy to their properties through effectively learning from 82 

the past and even failed data, immensely expediting the exploration period and reducing the cost. More 83 

importantly, the feasibility and potential of introducing ML into the field of CDs research have been 84 

convincingly proved (Chen et al., 2022; Han et al., 2020; Hong et al., 2022; Luo et al., 2022; Wang et al., 85 

2021). For example, in 2020, Wu's group developed an XGBoost ML model to reveal the relationship between 86 

various synthesis parameters and experimental outcomes, resulting in the successful creation of green-87 

emission CDs with fluorescent quantum yields of up to 39.3% (Han et al., 2020). Subsequently, Qian's group 88 

also used an extreme gradient boosting (XGBoost) ML model to fabricate customized CDs with excellent 89 

optical properties (Hong et al., 2022). More recently, Liu's group created a Random Forest (RF) ML model to 90 

investigate the reaction parameters and photoluminescence properties of CDs in multiple dimensions, 91 

accurately predicting their photoluminescence properties (Chen et al., 2022). And Huang’s group revealed the 92 

feasibility of ML to assist the synthesis of red fluorescent CDs (Luo et al., 2022). Existing studies employing 93 

ML to predict the optical properties of CDs have made significant progress, but they are unable to achieve 94 

intelligent optimization preparation of CDs, resulting in the inability to controllably synthesize CDs with 95 
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specific properties (Chen et al., 2022; Han et al., 2020; Hong et al., 2022; Luo et al., 2022; Wang et al., 2021). 96 

More importantly, no research on the predictable design and controlled preparation of CDs-based corrosion 97 

inhibitors via ML has been reported until now. This research gap makes it impossible to achieve controlled 98 

synthesis of CDs-based corrosion inhibitors based on ML, seriously hindering the development of CDs-based 99 

corrosion inhibitors. 100 

 101 

Scheme 1 Application of ML for controlled synthesis of CDs-based corrosion inhibitors: (a) establishment 102 

of the dataset; (b) modelling for inhibition efficiency prediction; (c) synthetic optimization of CDs. 103 

Taking this into account, the current work aims to provide a suitable ML model to predict inhibition 104 

efficiency and optimize the synthesis process of CDs-based corrosion inhibitors, resulting in their controlled 105 

synthesis. The demerits of the trial-and-error method including randomness, subjectivity and contingency are 106 

successfully surmounted. In detail, a RF ML regression model on hydrothermally synthesized CDs-based 107 

corrosion inhibitors is established, revealing the relationship between various synthesis parameters and the 108 

inhibition efficiency of CDs. Guided by the RF model, the inhibition efficiencies of CDs-based corrosion 109 

Jo
urn

al 
Pre-

pro
of



7 
 

inhibitors are precisely predicted, and their synthesis route is intelligently optimized based on the genetic 110 

algorithm (GA) (Scheme 1). In the Section of Results and discussion, firstly, the processes for predictable 111 

design and controlled preparation of CDs-based corrosion inhibitors by ML are depicted; Secondly, extraction 112 

of the dataset for ML is presented; Subsequently, construction of ML model for inhibition efficiency prediction 113 

is shown; And then, intelligent optimization of the synthesis route for CDs-based corrosion inhibitors is 114 

illustrated; Finally, characterization of CDs-based corrosion inhibitors synthesized with the assistance of the 115 

GA is performed. This study demonstrates that ML as an effective strategy can establish the relationship 116 

between synthesis parameters and inhibition efficiencies of CDs, and guide the optimization of synthesis 117 

conditions for CDs-based inhibitors. All the observations above would assist researchers in the controlled 118 

synthesis of CDs-based corrosion inhibitors with predictable inhibition efficiency.  119 

2. Experimental section 120 

2.1. Materials and Reagents 121 

Concentrated hydrochloric acid (HCl; AR grade, 36%~38%) was purchased from Sinopharm Chemical 122 

Reagent Co., Ltd. (Shanghai, China). Ammonium citrate (AC; AR grade), o-phenylenediamine (o-PD; AR 123 

grade) and citric acid (CA) were collected from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). 124 

All the chemicals were used as received without further purification. Deionized (DI) water was adopted 125 

throughout the experiment. Q235 carbon steel specimens with the size of 15 mm × 15 mm × 3 mm were 126 

obtained from the local supplier. They were polished using several grades of emery papers (400, 600, 800, 127 

1000, 1200, 1500 and 2000 grid) sequentially, then washed by DI water and degreased through ethanol, finally 128 

dried under cold air flow for electrochemical experiments. 129 

2.2. Synthesis of CDs-based corrosion inhibitors 130 

The precursor (AC, o-PD or CA) and DI water with a certain mass ratio were sealed into a Teflon-lined 131 
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stainless autoclave, and then placed into a drying oven at some temperature for a certain time. After cooling 132 

to room temperature, the mixture was centrifuged at 8000 rpm for 15 min, and then filtered via a 0.1 μm 133 

membrane to remove large particles. Finally, to obtain solid-state CDs, rotary evaporation and vacuum freeze-134 

drying were used to treat mixture above. The collected CDs could be directly used as the corrosion inhibitors. 135 

Hence, in this work, CDs-based corrosion inhibitors refer to CDs.  136 

2.3. Characterization of CDs 137 

Transmission electron microscopy (TEM, Hitach HT7700, Japan) were used to observe CDs morphology. 138 

Raman spectra were confirmed using an alpha300 R Raman spectrometer (WITec, Germany) with an 139 

excitation wavelength of 488 nm. Fourier transform infrared spectroscopy (FTIR, Thermo Scientific Nicolet-140 

6700, USA) and X-ray photoelectron spectrometer (Thermo Scientific K-Alpha+, USA) were introduced to 141 

confirm the functional groups information of CDs. The Ultraviolet–visible (UV–vis) spectra of CDs were 142 

gathered by employing a Lambda 750 UV−Vis−NIR spectrophotometer (Perkin Elmer, USA) with a 1.0 cm 143 

optical path.  144 

2.4. Electrochemical measurement 145 

The test solutions for confirming inhibition efficiency of CDs were obtained as follows. A certain quality 146 

of CDs was directly added to 1 M HCl solution, and a homogeneous solution as the test solution was formed 147 

under the glass rod stirring. The electrochemical measurement containing electrochemical impedance spectra 148 

(EIS) and potentiodynamic polarization (PDP) curves was performed on a PARSTAT 4000+ electrochemical 149 

station with a classical three-electrode system, in which Q235 carbon steel sample, a platinum plate and a 150 

saturated calomel electrode (SCE) were used as the working electrode (WE), counter electrode (CE) and 151 

reference electrode (RE) respectively. WE with the exposure area of 1 cm2 was placed into a self-made 152 

container. Prior to each measurement, open circuit potential (OCP) must attain a stable state. The testing 153 
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parameters for EIS were from 105 to 10-2 Hz with 10 mV amplitude sinusoidal voltage. PDP curves were 154 

measured by scanning the potential range within ±250 mV versus OCP with a scanning rate of 1 mV s-1. All 155 

the electrochemical experiments were carried out three times to guarantee the reproducibility. 156 

2.5. Random Forest (RF) model 157 

The RF model is an ensemble learning algorithm introduced by Breiman and Cutler in 2001 (Breiman, 158 

2001), combining the Bagging algorithm and decision tree algorithm. It offers a powerful and novel method 159 

for establishing a nonlinear mapping between input variables and their responses (Breiman, 2001). The RF 160 

model, able to categorize and predict data, works by constructing numerous decision trees from distinct subsets 161 

of the dataset and features. On account of its high prediction accuracy, robustness against outliers and noise, 162 

fast computation speed, and the ability to mitigate overfitting, the RF model is particularly suitable for 163 

managing huge data. The underlying principle of RF involves employing the bootstrap technique to generate 164 

random samples (known as bagging) from the original dataset, constructing individual decision trees, and 165 

selecting random feature subsets for splitting at each tree node. These decision trees are then combined to 166 

yield the final prediction through majority voting. The construction of each tree can be regarded as a 167 

partitioning of the data space, with the leaf nodes representing the partitions. These partitions are super-168 

rectangular units that collectively cover the entire data space. The key steps include sample bootstrap sampling, 169 

random feature subspace selection, and majority voting (Breiman, 1996). 170 

2.6. Genetic algorithm (GA) 171 

GA, an evolutionary algorithm extensively used in computational mathematics (Whitley, 1994), delivers 172 

excellent answers to optimization issues. Inspired by evolutionary biology concepts such as heredity, mutation, 173 

natural selection, and hybridization, GA is well-suited for tackling complex optimization challenges. In an 174 

optimization problem, candidate solutions, referred to as individuals, are depicted as chromosomes. The 175 
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population evolves over successive generations towards improved solutions (Lim et al., 2004). The 176 

evolutionary process begins with an initial population consisting of randomly generated individuals and 177 

proceeds iteratively. Each generation entails evaluating the fitness of the entire population and randomly 178 

selecting a subset of individuals based on their fitness. These selected individuals are subjected to natural 179 

selection and mutation, resulting in the generation of a new population. This new population subsequently 180 

becomes the current population for the next iteration of the algorithm. 181 

3. Results and discussion 182 

3.1. Processes for predictable design and controlled preparation of CDs-based corrosion inhibitors by ML 183 

As shown in Scheme 1, the processes for controlled preparation of CDs-based corrosion inhibitors with 184 

the predictable inhibition efficiency guided by ML are divided into the following three steps. Firstly, 102 data 185 

points on CDs synthesis and inhibition efficiency are collected from a large number of reported studies and 186 

our own experiments to create the dataset. And the features include CDs concentration in HCl, precursor type 187 

and quantity, solvent type and volume as well as reaction time and temperature, while the objective is the 188 

inhibition efficiency of each CDs-based corrosion inhibitor calculated by PDP serves. Secondly, after training 189 

and evaluation of various models, the RF regression model with the best performance is chosen as the optimal 190 

model, which can accurately conjecture the inhibition efficiency of the specific CDs-based corrosion inhibitor. 191 

Thirdly, the synthesis route of CDs-based corrosion inhibitors is intelligently optimized by GA, based on the 192 

RF model and with the highest corrosion inhibition efficiency as the optimization objective. These procedures 193 

will be thoroughly explained in following sections. 194 

3.2. Extraction of the dataset for ML 195 

N doping endows CDs with more excellent inhibiting effects owing to its strong adsorption properties 196 

(Cen et al., 2019; Guo et al., 2022; Long et al., 2022a; Zhu et al., 2022). Hence, the employment of N-197 
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containing precursors conduces to improving the inhibition efficiency of CDs. The obvious regularity above 198 

is easily observed from previous studies, but it is quite difficult to explicate clearly the association between 199 

synthesis conditions of CDs and their corresponding inhibition properties. In this case, it is necessary to use 200 

ML to acquire hidden information behind the synthesis parameters, assisting researchers quickly choose the 201 

suitable reaction conditions. First of all, the dataset is created by combining 102 data points on CDs synthesis 202 

and inhibition efficiency from multitudes of reported studies and our own experiments. In detail, according to 203 

previous experience and existing research, CDs concentration in HCl, precursor type and quantity, solvent 204 

type and volume, reaction time and temperature possibly governing the inhibition performance of CDs are 205 

chosen as typical parameters. Since the precursor type and solvent type fail to directly input into the ML model, 206 

the precursor type is converted into two primary characteristics including N and C atomic content, while the 207 

solvent type is replaced by code figures (Number 1, 2, 3 and 4 represent ethanol, NaOH solution, distilled 208 

water and DI water, respectively). Naturally, these eight descriptors containing CDs concentration in HCl, N 209 

atomic content, C atomic content, precursor quantity, solvent type and volume, reaction time and temperature 210 

are regarded as features (Table 1). The inhibition efficiencies of CDs calculated by PDP act as the objective. 211 

It should be pointed out that the inhibition efficiencies of CDs are acquired only from the references utilizing 212 

CDs as corrosion inhibitors for Q235 carbon steel in 1 M HCl or 0.5 M H2SO4 at room temperature. In addition 213 

to extracting data of CDs from the published literature, 10 sets of data containing CDs synthetic conditions 214 

and inhibition efficiencies are collected by our experiments to perfect the dataset for ML. This contributes to 215 

ensuring the reliability of ML models in guiding the synthesis of CDs-based corrosion inhibitors. The 216 

inhibiting efficiencies of the as-prepared CDs at different concentrations are calculated by their PDP curves. 217 

The corresponding synthetic parameters of CDs and their inhibition efficiencies calculated by PDP are shown 218 

in Table S1. Subsequently, the pairwise correlation between different features is examined before ML model 219 
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training. As presented in Fig. 1a, all the pairs of features illustrate low linear correlations, testifying the validity 220 

of feature selection. 221 

Table 1 Descriptions of the input features for RF. 222 

Features Descriptions 

CDs concentration in HCl The concentration of CDs-based corrosion inhibitors in 1 M HCl 

N atomic content The atomic mass of N multiplies by the number of N in the precursor 

C atomic content The atomic mass of C multiplies by the number of C in the precursor 

Precursor quantity The total quantity of precursor used to prepare CDs 

Solvent type The type of solvent employed to synthesize CDs 

Solvent volume The total volume of solvent used to prepare CDs 

Reaction time Hydrothermal time for preparing CDs by hydrothermal method 

Reaction temperature Hydrothermal temperature for preparing CDs by hydrothermal method 

3.3. Construction of ML model for inhibition efficiency prediction 223 

The optimal ML model selection process is displayed in Fig. S1. After the establishment of the dataset, 224 

a series of different regression models containing gaussian process regression (GPR), K-nearest neighbor 225 

(KNN), XGBoost, support vector regression (SVR) and RF are examined by the established dataset. And 10-226 

fold cross-validation is chosen as the evaluation method for these models, owing to its accurate and objective 227 

evaluation of model performance. When the requirements of the evaluation indicators containing root-mean-228 

square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2) are met, the optimal 229 

model is screened to conjecture the inhibiting properties of CDs-based corrosion inhibitors, resulting in more 230 

efficient whole learning process. More specifically, the dataset is randomly shuffled, and then grouped at a 231 

ratio of 9:1 acting as the training set and validation set respectively. The former is applied to train the ML 232 

model; While the latter is employed to evaluate the performance of the thoroughly optimized ML model, 233 

thereby avoiding its overfitting. Subsequently, RMSE, MAE and R2 are introduced to access the performance 234 

of different models. According to the conditions of the lowest RMSE and MAE as well as the highest R2 in 235 
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the training set and validation set, the RF model outperforms the other models in predicting the inhibiting 236 

performance of CDs-based corrosion inhibitors, as depicted in Fig. 1b and 1c. As is well known, RF model 237 

possesses high prediction accuracy, robustness against outliers and noise, fast computation speed and the 238 

ability to mitigate overfitting. It should be mentioned that by grid search, hyperparameter tuning is carried out 239 

to perfect these models. As a result, the RF model with an excellent generalization ability is finally chosen for 240 

further analysis and application.  241 

 242 

Fig. 1 (a) Heat map of Pearson’s correlation coefficient matrix among the selected features of CDs (from A 243 

to I: CDs concentration in HCl, N atomic content, reaction time, solvent type, solvent volume, precursor 244 

quantity, C atomic content, reaction temperature and inhibition efficiency); Performance of different ML 245 

models evaluated by RMSE, MAE and R2 in the (b) training set and (c) validation set (from Ⅰ to Ⅵ: GPR, 246 

KNN, XGBoost, SVR and RF). 247 

The performance of the RF model depends on the number of decision trees it includes. To determine the 248 

optimal number of decision trees, the RF model is tested with the number of trees ranging from 200 to 1000. 249 
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The results reveal that the Out of Bag (OOB) error consistently decreases until the number of trees reaches 250 

460. Beyond this point, the classification error does not change significantly, even as the number of trees 251 

increases up to 1000. Therefore, the RF structure developed in this study consists of 460 decision trees. To 252 

display the effectiveness and generalization performance of the trained RF model, it is necessary to prove its 253 

performance in the predicting inhibiting behaviors of CDs-based corrosion inhibitors. As illustrated in Fig. 2a 254 

and 2c, regardless of training or validation set, the majority of experimental values fall on the line y = x, 255 

indicating that the predicted values are in good agreement with the true values. The error rate (that is relative 256 

error between experimental and predicted values) leads to the same conclusion as above, since the error rates 257 

for the training and validation sets are almost less than 10% (Fig. 2b and 2d), and synchronously, the prediction 258 

error (namely, the absolute error between the predicted value and experimental value) for most of data is 259 

within ±0.02 (Fig. S2). The above findings verify that the established RF model possesses an eminent feature 260 

extraction ability, converting the data into better feature expression and learning the distribution regularity of 261 

the data to accurately predict the inhibition performance of CDs-based corrosion inhibitors without overfitting. 262 

Consequently, the trained RF model with an outstanding generalization performance combines multiple data 263 

processing algorithms, which is suitable to effectively enhance the synthesis efficiency of CDs-based 264 

corrosion inhibitors. In detail, the designed synthesis parameters are simply input into the RF model prior to 265 

the implementation of the synthetic experiment of CDs-based corrosion inhibitors. The prediction result will 266 

then show whether the synthesis conditions are capable of producing CDs-based corrosion inhibitors with the 267 

desired inhibition performance. This will greatly improve the synthesis efficiency of CDs-based corrosion 268 

inhibitors by avoiding invalid experiments. In addition, it should be noted that with the expansion of the dataset 269 
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in the future, the generalization performance of the RF model will be further strengthened.  270 

 271 

Fig. 2 The prediction effect for inhibiting behaviors of CDs-based corrosion inhibitors by the trained RF 272 

model: scatter plot and error plot of predicted and experimental values for (a-b) the training dataset and (c-d) 273 

test dataset. 274 

To comprehensively reveal the correlation between hydrothermal reaction parameters and inhibition 275 

performance of CDs-based corrosion inhibitors, the importance of each feature is extracted from the trained 276 

RF model. The importance of a feature indicates how much it contributes to the prediction. The higher the 277 

importance of a feature, the greater the influence on the experimental outcome, that is, the value of inhibition 278 

efficiency. As indicated in Fig. 3, CDs concentration in HCl plays the most important role determining the 279 

inhibition behaviors of synthesized CDs, followed by N atomic content and reaction time. This result well 280 

coincides with the previous research (Cui et al., 2017; He et al., 2022a; Long et al., 2022a; Long et al., 2022b; 281 
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Qiang et al., 2019; Ren et al., 2022; Ye, Yuwei et al., 2020; Ye, Y. et al., 2020). Normally, regardless of the 282 

type of CDs, the higher the CDs content, the better the corrosion inhibition performance. This is possibly 283 

attributed to the fact that CDs with a higher concentration tend to form a more effective film on the surface of 284 

metals. Hence, CDs concentration in HCl is the most important feature to affect the value of inhibition 285 

efficiency. Moreover, from the inhibition mechanism aspect to interpret, N-containing groups give rise to the 286 

formation of coordination bonds between lone pair electrons of N atom and the unoccupied 3d orbital of Fe 287 

atoms, rendering CDs easily adsorb on steel substrate to resist corrosion (Cen et al., 2019; Guo et al., 2022; 288 

Long et al., 2022a; Zhu et al., 2022). Thus, the N atomic content in the precursor dominates the inhibiting 289 

performance of CDs through influencing the number of N-containing groups in final CDs. Regarding reaction 290 

time, it primarily affects the dehydration and condensation degrees of CDs in the reaction process, thereby 291 

mainly determine the structures of the final CDs (Ehrat et al., 2017; Shuang et al., 2020). Consequently, CDs 292 

with various structures have the different inhibition efficiencies. The above observations demonstrate that 293 

ranking importance offers an effective route to explore the significance of different reaction parameters in the 294 

synthesis of CDs-based corrosion inhibitors, assisting researchers in selectively synthesizing CDs-based 295 

corrosion inhibitors according to the influence degree of parameters. In a word, the trained RF model not only 296 

presents a remarkable prediction performance for the inhibiting efficiency of CDs-based corrosion inhibitors, 297 

but also offers a valuable algorithm for evaluating the significance of diverse features in the synthesis of CDs-298 

based corrosion inhibitors, thus revealing the relationship between hydrothermal reaction parameters and their 299 

inhibition performance. 300 
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 301 

Fig. 3 (a) The feature importance extracted from the RF model (from A to H: CDs concentration in HCl, N 302 

atomic content, reaction time, solvent type, solvent volume, precursor quantity, C atomic content and 303 

reaction temperature); (b) the iterative curve for the optimization of inhibiting efficiency. 304 

3.4. Intelligent optimization of the synthesis route for CDs-based corrosion inhibitors 305 

GA is generally known as a way of searching for optimal solutions by simulating natural evolutionary 306 

processes, well-suited for addressing complex optimization issues. To dismiss the conventional trial-and-error 307 

exploration, the GA is introduced on the basis of the RF model to achieve intelligent optimization of the 308 

synthesis route for CDs-based corrosion inhibitors with the highest inhibition efficiency as the optimization 309 

objective. The optimization schematic with the highest inhibition efficiency as the objective is shown in Fig. 310 

S3. First of all, the RF model as the prediction model is established, whose creation process is described in 311 

Section 3.3. Then the developed RF model is used to calculate the inhibition efficiency, and the objective 312 

function is set as maximized inhibition efficiency. At the same time, the synthesis of CDs is subjected to 313 

various constraints, thus some constraint conditions are essential to be defined. With respect to the precursor, 314 

o-PD containing both carbon and nitrogen elements is frequently selected as the precursor to synthesize N-315 

doped CDs. More importantly, o-PD derived N-doped CDs present a favorable inhibiting behavior for the 316 

steel in the corrosive acid solution. However, in the existing literature, the hydrothermal preparation conditions 317 
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of o-PD derived N-doped CDs still suffer from long preparation time, unfriendly solvents and requirement of 318 

additional precursors. Thus, it is highly urgent to optimize the preparation conditions of o-PD derived N-doped 319 

CDs without reducing their inhibition properties. Inspired by this, the o-PD is chosen as the precursor. If the 320 

preparation conditions of o-PD derived N-doped CDs is able to intelligently optimized by GA based on the 321 

RF model, it not only contributes to the efficient and low-cost use of o-PD, but also validates the application 322 

potential of ML in CDs-based corrosion inhibitors. Furthermore, in light of the previous reports and the 323 

established dataset in Section 3.1, the range constraint of each feature is displayed in Table 2. Finally, to obtain 324 

the highest inhibiting efficiency, GA optimization is performed, including the calculation process of selection, 325 

crossover and variation. And with the repetitions number condition, the optimization process is terminated 326 

until the final condition of the algorithm is satisfied (namely, convergence of the iteration curve). The typical 327 

iterative curve during the optimization process is described in Fig. 3b, presenting that the best fitness 328 

converges after around 240 iterations. After that, the optimized synthetic conditions are figured out. 329 

Meanwhile, taking into account the reduction of reaction time and the use of environmentally friendly 330 

solutions, the most appropriate optimized synthesis conditions are selected. That is, the amount of o-PD is 331 

1.85 g; the solvent type is DI water; the solvent volume is 43.3 mL; the reaction time is 2.28 h, and the reaction 332 

temperature is 188oC. 333 

Table 2 The requirements for the lower limit and the upper limit of each feature (Since the precursor type is 334 

o-PD, N and C atomic contents are confirmed). 335 

Feature Lower limit Upper limit 

CDs concentration in HCl (mg/L) 1 200 

Solvent type 1 4 

Solvent volume (mL) 0 100 

Precursor quality (g) 0.6 12.7 

Reaction time (h) 0.5 10 

Reaction temperature (oC) 150 200 

Jo
urn

al 
Pre-

pro
of



19 
 

3.5. Characterization of CDs-based corrosion inhibitors synthesized with the assistance of the GA 336 

Prior to confirming the inhibiting behavior of the product synthesized with the assistance of the GA, its 337 

morphological, structural and optical characterization is performed to testify the successful synthesis of CDs-338 

based corrosion inhibitor (i.e., the as-prepared CDs). The morphology of the product is identified by TEM. As 339 

displayed in Fig. 4a, most of particles with a quasi-spherical shape share a favorable dispersion, and possess 340 

a size distribution of 1.41–2.73 nm in range and ca. 2.05 nm on average by randomly counting more than 100 341 

particles. FTIR spectra and XPS are preformed to confirm the exhaustive information referring to surface 342 

chemical states and the elemental composition of the obtained product. For FTIR spectra (Fig. 4b), the broad 343 

absorption peaks at 3200−3400, 1630, 1459 and 1054 cm−1 are assigned to –OH/–NH, C=O, C–N and C–O 344 

respectively (E et al., 2021; Fu et al., 2023; Xia et al., 2018), suggesting the product possess numerous O- and 345 

N-containing functional groups, thereby conferring outstanding water solubility and excellent dispersity in 346 

aqueous systems on the product. The similar conclusion can be drawn from XPS. The full range XPS (Fig. 347 

S4) of CDs involves three marked peaks, assigned to C1s, N1s and O1s. High-resolution XPS C1s, O1s and 348 

N1s spectra (Fig. 4c-e) demonstrate the presence of C=C/C–C, C–O, C=O, C–N and N–(C)3 (E et al., 2021; 349 

E et al., 2018; Li et al., 2019). The optical properties of CDs are measured by UV–vis spectra. As displayed 350 

in Fig. 4f, the obvious absorption peaks at 232 and 288 nm are ascribed to the π–π* transition of aromatic sp2 351 

domains (Xu et al., 2022), and the weak absorption peak at 421 nm is attributed to n−π* transition of O- and 352 

N-containing functional groups (Zhang et al., 2018). This implies that the particles in the product are 353 

composed of the carbon core as well as O- and N-containing surface groups, giving rise to multiple electronic 354 

transition states. In addition, the product aqueous solution with the concentration of 1 mg/mL shows yellow 355 

color exposed to visible light and emit a bright yellow fluorescence excited by a 365 nm UV light. According 356 

to the definition of CDs, which is that CDs normally are small carbon nanoparticles with the size less than 10 357 

Jo
urn

al 
Pre-

pro
of



20 
 

nm and the fluorescence as an instinct nature, and a single CD typically consists of a carbon core and 358 

oxygen/nitrogen-containing surface groups (Ai et al., 2021; He et al., 2021; He et al., 2022b), the above 359 

product is doubtlessly CDs (directly serving as the corrosion inhibitor). Therefore, the CDs are successfully 360 

prepared with the assistance of the GA. 361 

 362 

Fig. 4 Morphological and structural characterization of CDs: (a) TEM image (with the corresponding size 363 

distribution, inset); (b) FTIR spectra; (c-e) high-resolution XPS C1s, O1s and N1s spectra; (f) UV-vis 364 

spectra (with photographs taken under daylight and a 365 nm UV light, inset). 365 

To validate the successful controlled fabrication of CDs-based corrosion inhibitors with predictable 366 

inhibition efficiency, the measured inhibition efficiency of as-prepared CDs is compared to their predicted 367 

inhibition efficiency originating from by the GA. PDP test is executed to find out the measured inhibition 368 

efficiency (IE) of CDs for Q235 carbon steel in 1 M HCl at room temperature (Fig. 5). The corrosion potential 369 

(Ecorr), corrosion current density (icorr), cathode slope (βc), anode slope (βa) and IE of blank group and CDs-370 

containing group are summarized in Table 3. With respect to blank group, the CDs-containing group presents 371 

a positive shift in the Ecorr value, suggesting the effective inhibition performance of the as-obtained CDs guided 372 
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by the GA. Clearly, both βc and βa values uncover a great decrease in the presence of CDs, and its βa value 373 

reduces more sharply than the βc value, implying that CDs demonstrate mixed-type inhibitive actions, and 374 

dramatically restrain the anodic dissolution reaction on the anode (He et al., 2022a). Correspondingly, the icorr 375 

value of CDs-containing group decreases by two orders of magnitude compared to the blank group, leading 376 

to a high IE value of 92.3%. This measured IE (92.3%) exhibits excellent agreement with the predicted 377 

inhibition efficiency (94.6%) only within an error less than 3%. Similarly, these above findings can also be 378 

observed from the EIS measurement (Fig. 5b). By calculation, the inhibition efficiency value (η) in the 379 

presence of CDs boosts more than 96%, close to the predicted inhibition efficiency value (Table 4). And as 380 

depicted in Bode plots (Fig. 5c), the |Z|0.01 Hz value of CDs groups increases tremendously in striking contrast 381 

to that of the blank group. At the same time, the phase angle in the presence of CDs dramatically enlarges, 382 

signifying the adsorption of CDs on the metal matrix (Ye et al., 2019). All the results above not only suggest 383 

that CDs synthesized with the assistance of the GA can efficiently suppress the corrosion of carbon steel in 384 

HCl solution, but also demonstrate that based on the GA, CDs-based corrosion inhibitors with a predictable 385 

inhibition efficiency are able to controllably synthesized. It must be emphasized that in comparison to the 386 

previous report using the same precursor (o-PD) to blindly prepare the CDs-based corrosion inhibitor (Cui et 387 

al., 2018), the reaction time in this work is enormously reduced by 81.0% (from 12.0 to 2.28 h) at the same 388 

reaction temperature, and the solvent is changed from ethanol to safer and cheaper DI water. More importantly, 389 

the two kinds of CDs share the similar inhibition efficiency. These comparisons further illustrate that based 390 

on the GA, ML can optimize the synthesis route of CDs with a desirable inhibiting performance, avoiding 391 

invalid synthetic experiments driven by trial-and-error method and tremendously enhancing the synthetic 392 

efficiency of CDs-based corrosion inhibitors.  393 
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 394 

Fig. 5 Electrochemical characterization: (a) PDP curves (b) Nyquist and (c) Bode plots. 395 

Table 3 The calculated electrochemical parameters from PDP curves. 396 

Sample Ecorr (mV/SCE) icorr (μA/cm2) βc (mV/dec) βa (mV/dec) IE (%) 

Blank -482 534.2 130 97  

CDs -475 41.0 98 94 92.3 

Table 4 The fitting electrochemical parameters from EIS plots. 397 

Sample Rs (Ω cm2) Rct (Ω cm2) CPEdl (μF cm-2) n η (%) 

Blank 4.4 32.0 158 0.890  

CDs 3.5 826.4 52 0.894 96.1 

4. Conclusions 398 

To cover the gap regarding the lack of controllable preparation for CDs-based corrosion inhibitors, the 399 

present study firstly exploits the RF ML model to successfully guide the controlled synthesis of CDs-based 400 

corrosion inhibitors with precisely predictable inhibiting efficiency, overcoming defects of the trial-and-error 401 

way. The main conclusions were summarized as follows.  402 

(1) The dataset is established by extracting 102 synthesis data points from multitudes of reported studies 403 

and our experiments. Then the RF regression model with the optimal performance is created, which can 404 

accurately predict the inhibition efficiencies of CDs-based corrosion inhibitors with an error less than 10%.  405 

(2) With the assistance of feature importance from the RF model, the decisive factors in the synthesis of 406 

CDs-based corrosion inhibitors can be screened out. The concentration of CDs in HCl has the greatest 407 

influence on the inhibitory behaviors of the synthesized CDs, followed by N atomic content and reaction time. 408 

Jo
urn

al 
Pre-

pro
of



23 
 

This contributes to better understanding the relationship between various hydrothermal synthesis parameters 409 

and the inhibition efficiency.  410 

(3) Guided by the RF model, the synthesis route of CDs-based corrosion inhibitors is intelligently 411 

optimized by employing GA. The error between the measured IE (92.3%) and the predicted inhibition 412 

efficiency (94.6%) is only less than 3%. Therefore, controlled preparation for CDs-based corrosion inhibitors 413 

with a favorable and predictable inhibition efficiency is successfully achieved.  414 

These findings provide an effective ML strategy to controllably synthesize CDs-based corrosion 415 

inhibitors with the predictable inhibition efficiency, filtering out unsatisfactory synthesis conditions and 416 

greatly improving the synthetic efficiency of CDs-based corrosion inhibitors. Consequently, it contributes to 417 

reducing resource waste and minimizing environmental implications, supporting the sustainability and cleaner 418 

production in the field of corrosion inhibitors. In addition, the proposed ML is expected to be employed for 419 

the design and synthesis of other novel materials. It should be emphasized that the availability of high-quality 420 

data poses a challenge to the performance and generalization capabilities of ML model. Hence, the availability 421 

of diverse and well-curated datasets encompassing a wide range of corrosion inhibitors and experimental 422 

conditions would conduce to the robustness and accuracy of inhibition efficiency predictions. In this work, 423 

the dataset is constructed by combining 102 data points from numerous published studies and our own 424 

experiments. Future efforts should be made to collect high-quality data to further refine and update the as-425 

exploited ML model. This ongoing improvement will enhance the accuracy and applicability of our ML 426 

approach, and foster the development of more efficient and sustainable corrosion inhibition strategies.  427 
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Highlights: 

1. Machine learning is used to predict inhibition efficiency (IE) of carbon dots (CDs). 

 

2. The correlation between synthesis parameters and IE of CDs is revealed.  

 

3. Synthesis route of CDs-based corrosion inhibitors is optimized by genetic algorithm. 
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