
Implementation of Information Entropy, b-Value, and
Regression Analyses for Temporal Evaluation

of Acoustic Emission Data Recorded during ASR Cracking
V. Soltangharaei, M.ASCE1; L. Ai2; R. Anay3; M. Bayat, M.ASCE4; and P. Ziehl, M.ASCE5

Abstract: This study investigates the efficacy of differing information entropy calculation approaches for concrete structures undergoing
alkali-silica reaction (ASR)-induced cracking. In prior work, information entropy has only been utilized for a better understanding of the
damage in metallic structures under external loading. To our knowledge, no research has been published regarding information entropy for
concrete structures affected by ASR. This scientific gap is addressed in this paper. Furthermore, the innovation lies in using coefficients
of determination instead of b-values for cracking identification. The entropy results show that the randomness of events increases at the
earlier stage of ASR, which is expected due to the microcrack formation, and decreases at the later stage due to the formation of macro-
cracks. Moreover, a correlation is observed between the coefficients of determination and the evolution of the cumulative signal strength.
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Introduction

One potential source of degradation in concrete structures is the
alkali-silica reaction (ASR) (Bach et al. 1993; Clark 1989). This
chemical reaction occurs between siliceous minerals in some aggre-
gates and alkali hydroxides in pore solutions (Barbosa et al. 2018;
Rajabipour et al. 2015). The chemical product is a hygroscopic
material called alkali-silica gel, which absorbs water causing its
volume to increase. The rise in the volume of gel induces stress
to aggregates, and the cement matrix causes cracking and damage
(Garcia-Diaz et al. 2006; Saouma and Hariri-Ardebili 2014). The
cracking in cementitious material leads to strength reduction and
damage in the material. The chemical reaction gradually continues
for several years (Fernandes and Broekmans 2013). In a laboratory,
aging caused by ASR is usually accelerated by exposing concrete
specimens to high temperatures and humidity exceeding 80%
(Garcia-Diaz et al. 2006).

Several methods have been employed to detect ASR and the
corresponding damage in concrete structures, including visual

inspection, petrographic analysis, demountable mechanical strain
gauges (DEMEC gauge), and a cracking index (Islam and Ghafoori
2018; Allard et al. 2018; Sinno and Shehata 2019; Hayes et al. 2018;
Thomas et al. 2013; Fournier et al. 2010). These methods are not
always efficient in early damage detection. The ASR cracking ini-
tiates inside structures and sometimes appears very late on the sur-
face of the concrete. Therefore, visual inspection is not a reliable
method for the early detection of ASR cracking. The DEMEC
gauge and cracking index are usually used on the surface of the
concrete to measure the expansion and crack width. In some struc-
tures, like shear walls, the expansion mostly occurs out-of-plane
rather than in-plane due to the in-plane stress restraint. Therefore,
the expansion and resulting cracking do not appear on the surface
until the end of the reaction, and the DEMEC gauge and cracking
index are not useful for the ASR detection. In addition, some meth-
ods (e.g., coring and petrographic analysis enabled through coring)
are destructive and sometimes prohibited in sensitive structures,
such as nuclear structures and prestressed concrete elements.

Nondestructive structural health monitoring systems may be
alternatives to compensate for the drawbacks attributed to the tradi-
tional methods. Acoustic emission (AE) can fall under this category
and is a passive system, which can be employed to monitor
structures continuously. AE piezometric sensors are sensitive to
cracking initiation and growth and can be attached to one side of
structures. The sensors detect and record elastic stress waves emit-
ted due to crack formation. In addition, source localization is fea-
sible with an appropriate sensor layout. Recently, research has been
conducted to employ AE for monitoring ASR-induced damage
(Abdelrahman et al. 2015; Farnam et al. 2015; Lokajíček et al.
2017) using signal features such as cumulative signal strength and
amplitude (parametric features). Although correlations between
some parametric AE features, such as cumulative signal strength
(CSS) and ASR expansion, have been observed in the literature,
the parametric features may not be appropriate options to assess
the condition of structures and make a comparison between data
collected from different structures due to the high-dependency
of them on sources to sensor distance, structure dimensions, sensor
type, and concrete material. Therefore, one of the scientific gaps in
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this field is finding potential alternatives to address the problem
with the parametric features. In this paper, Shannon entropy has
been utilized to address some deficiencies related to the parametric
features.

Shannon entropy (information entropy) has recently been inves-
tigated for the damage evaluation of metallic material under fatigue
loading (Chai et al. 2018; Kahirdeh et al. 2017a; Unnthorsson et al.
2008; Amiri et al. 2015; Amiri and Modarres 2014; Kahirdeh and
Khonsari 2016; Zhang et al. 2015). Kahirdeh et al. (2017a) utilized
information entropy and relative entropy to study the damage evo-
lution of bone-shaped aluminum specimens under cyclic loading.
The trend of standardized cumulative entropy was similar to the
Vickers hardness trend. Chai et al. (2018) calculated a Shannon
entropy for hits recorded during a fatigue crack growth test con-
ducted on a notched alloyed steel plate and a monotonic three-point
bending test conducted on a small stainless-steel beam. The results
indicated that Shannon entropies for AE signals were useful to in-
form discrimination between damage stages, while the temporal
distribution of amplitude did not show any clear trend.

Although some studies have been conducted regarding an ap-
plication of information entropy as a damage criterion for metallic
material under cyclic loading, to our knowledge, research has not
been published regarding information entropy for cementitious ma-
terials under different loading conditions or the ASR process.
Therefore, in this study, information entropy results for the damage
evaluation of cementitious material with different scales and under
different stress boundary conditions are presented to evaluate the
efficacy of the method for the condition assessment of concrete
structures affected by ASR. To evaluate the effect of the specimen
size on the values of Shannon entropy, two sets of concrete spec-
imens (medium-scale and large-scale), which were exposed to ASR
expansion, were utilized in addition to a small-scale cement prism
under compressive loading.

Several AE-based analyses, such as intensity and b-value analy-
ses, have been proposed and employed in the previous literature to
evaluate damage in structures under external loading (Noorsuhada
2016; Rao and Lakshmi 2005; Colombo et al. 2003; Jung et al.
2017; Lamonaca et al. 2014; Abdelrahman et al. 2014; Sagasta
et al. 2018; Nair and Cai 2010). Despite a large amount of literature
regarding the application of the AE analyses for structures under
loading (Noorsuhada 2016; Rao and Lakshmi 2005; Colombo
et al. 2003; Jung et al. 2017; Lamonaca et al. 2014; Abdelrahman
et al. 2014; Nair and Cai 2010), limited research has been published
about using these analyses for the damage evaluation of structures
under ASR-induced stresses (Abdelrahman et al. 2015). Therefore,
in this study, a b-value analysis and a method based on the coeffi-
cients of determination and linear regression analysis are also used
to evaluate the temporal evolution of AE data for the medium-size
specimens during the ASR process.

Test Setup

In this study, AE data for three types of specimens having different
scales were investigated to study the effect of the combination of
variables, such as dimension, sensor sensitivity, and loading, on
Shannon entropy values. Each specimen type has a different test
setup and boundary conditions. The medium-scale specimens were
concrete blocks with dimensions of 305 × 305 × 1,120 mm with
differing reinforcement conditions. Two specimens possessed reac-
tive coarse aggregates (reactive specimens). One of the reactive
specimens had steel reinforcement along two dimensions (length
and depth), which is referred to as the medium-scale confined
specimen in this paper. The other reactive specimen did not have

any steel reinforcement and is referred to as the medium-scale un-
confined specimen. The detail of the medium-scale specimen is
shown in Fig. 1. The specimens were kept in a chamber with high
humidity and temperature (95%� 5% and 37°C� 3°C) to acceler-
ate the aging process. Ten broadband AE sensors were mounted on
the surfaces of the reactive specimens. The sensors were PKWDI
(MISTRAS Group, Princeton Junction, New Jersey) with the fre-
quency operating range of 200–850 kHz and 26-dB internal pre-
amplifications. A 24-channel Micro-II Express, manufactured by
MISTRAS Group, was utilized as a data acquisition system.
The sampling rate was 5,000 kHz, the pretrigger time was 256 μs,
and the hit definition time (HDT), peak definition time (PDT), and
hit lockout time (HLT) were 400, 200, and 200 μs, respectively.
The AE data acquisition starts to record a hit when the voltage
exceeds the threshold of the system. The HDT is a time that is de-
fined in the AE system for ending hits. The hit recording is stopped
when an amount of time equal to the HDT has elapsed without
any threshold crossings. The HDT is a time parameter, which is
defined in the AE system to remove tailing in hits caused by wave
reflections. This parameter is defined at the end of the signal, where
any threshold crossing during that time is ignored. The PDT is the
time that is defined in the system to find the peak and rise time in
signals. Bandpass digital and analog filters with a frequency range
of 20–400 kHz were set in the data acquisition system. A back-
ground test was conducted before the test, and the threshold was
set at 32 dB. More details about the medium-scale specimens can
be found in the study by Soltangharaei et al. (2020).

Also included in the study are two large-scale concrete speci-
mens with dimensions of 3,500 × 3,000 × 1,000 mm. The two
specimens have reactive aggregates. The specimens had reinforce-
ment on the top and bottom of the specimens. One of the specimens
was restrained in a rigid steel frame, which is referred to as the large-
scale confined specimen. The other specimen was not enclosed by a
steel frame, namely, the large-scale unconfined specimen in this
study. The test setup details are explained in Soltangharaei et al.
(2018a). In this study, the AE data for the reactive specimens is in-
vestigated. The specimens were kept in a large chamber with high

(a)

(b) (c)

Fig. 1. Dimension and sensor layout of medium-scale specimens:
(a) medium-scale specimens; (b) specimen section for the confined
specimen; and (c) specimen section for the unconfined specimen.
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humidity and temperature similar to the medium-scale specimens.
Three broadband AE sensors were embedded in the specimens
before casting. The sensors were WDIUC-AST (manufactured by
MISTRAS Group) with the operating frequency range of 200–
900 kHz and internal low-noise 40 dB preamplifiers. A 16-channel
Sensor Highway II (SHII), manufactured by MISTRAS Group, was
utilized as the data acquisition system. The sampling rate was set
to 1,000 kHz, the pretrigger time was 256 μs, and the HDT, HLT,
and PDT were 400, 200, and 200 μs, respectively. The initial data
acquisition threshold was 32 dB. The schematic figure for the large-
scale specimens is illustrated in Fig. 2.

The third specimen investigated in this study is a relatively small
cement paste specimen (referred to as the small-scale specimen)
with dimensions of 38.1 × 38.1 × 152.4 mm loaded in uniaxial
compression. Eight micro-30 resonant sensors (with an operating
frequency range of 150–400 kHz and external preamplifiers with
40 dB gain) were attached to the specimen surfaces close to the
specimen’s ends because the cracking started at the ends in the ce-
ment-paste. A sufficient amount of data was collected using the eight
sensors. In addition, this number of sensors had a minimal effect on
the cracking mechanism in the cement paste. A 16-channel DiSP

system manufactured by MISTRAS Group, was utilized for the data
acquisition. Preamplifiers with a 40 dB gain and bandpass internal
filters with the frequency range of 100–1,200 kHz were connected
to the sensors. The sampling rate was set to 1,000 kHz, the pretrig-
ger time was 256 μs, and the HDT, HLT, and PDT were 400, 200,
and 200 μs. The initial data acquisition threshold was 32 dB. The
small-scale specimen is shown in Fig. 3.

Analysis Method and Procedure

AE data were utilized to calculate signal entropies in all three speci-
men types. Conventional features, such as amplitude and signal
strength, were used in addition to entropies to evaluate the temporal
trend of data. Methods for calculating signal entropies and damage
indices are presented in the following subsections.

Signal Entropy

Two methods for calculating signal entropy may be found in the lit-
erature, and they have been employed for fatigue loading (Chai
et al. 2018; Kahirdeh et al. 2017b; Kahirdeh 2014; Sauerbrunn
2016; Kahirdeh and Khonsari 2016). The methods, which include
voltage amplitude entropy and feature entropy, are presented in this
section.

Voltage entropy is calculated based on the distribution of am-
plitude voltages of AE signals. The voltage amplitudes of each AE
signal are used to develop a histogram of the signal. The bin size is
recommended to be close to the resolution of the AE data acquis-
ition systems (Chai et al. 2018). The resulting histogram contains
several bars corresponding to the bins. Each bar shows the relative
frequency of voltages within a bin. The frequency of voltages
within a bin is the number of signal samples, and their voltages are
within the bin range. The relative frequency is calculated by divid-
ing the frequency of voltages by the total number of signal samples.
Then, the voltage entropy is calculated according to the Shannon
entropy equation

Entropy ¼ −Xn
i¼1

PðxiÞ × logðPðxiÞÞ ð1Þ

where n = number of bins in each signal; xi = bins defined in each
signal; and PðxiÞ = relative frequency of each bin calculated
according to the signal histogram. The procedure is shown in Fig. 4.
With this method, it is assumed that the voltage value changes
constantly and independently between the samples. There are two

(a)

Sensor 4

Sensor 5

Sensor 6

(b)

Concrete Specimen

Sensor 1

Sensor 2
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Steel Frame

Concrete Specimen
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Fig. 2. Dimension and sensor layout of large-scale specimens: (a) confined; and (b) unconfined.
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Fig. 3. Dimension and sensor layout of small-scale specimens.
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approaches to calculate entropy. One approach is to calculate the
entropy for each signal, namely, the discrete voltage entropy (DVE)
in this paper [Fig. 4(a)]. The other approach is to calculate the en-
tropy based on all signal voltages up to the desired experiment time.
In this method, the amplitude voltages of all signals up to the de-
sired time are used to derive a histogram and calculate an entropy.
This method is referred to as the global voltage entropy (GVE). In
Fig. 4(b), the signal voltages for two signals were used for devel-
oping a histogram and calculating the associated entropy. The next
entropy is calculated by using three signals. This is continued until
all signals are included in the calculation.

Another method is referred to as counts-entropy. There are two
methods for calculating counts-entropy. For both calculation meth-
ods, it is assumed that each count is independent of other counts.
In the first calculation method, the probability is calculated by di-
viding the counts of a signal corresponding to the desired time over
the cumulative counts up to that time. Then the counts-entropy is
calculated by using the Shannon entropy Eq. (1). This method is
referred to as CE. CE will be updated when a new signal is re-
ceived. In the second procedure, the cumulative distribution func-
tion (CDF) for counts up to the desired time is estimated by using
the empirical CDF method (Kahirdeh 2014), and the corresponding
probability distribution function (PDF) is derived. The entropy
is estimated using the probability distribution for each bin using
Eq. (1). This method is referred to as CE_CDF in this study. The
procedure is repeated when a new signal is received.

AE Damage Index Methods

One common method for damage (cracking) detection using AE
is the b-value analysis. This method is based on the Gutenberg-
Ritcher equation in seismology (Colombo et al. 2003). The modi-
fied version of the equation has been utilized in AE for damage
identification (Rao and Lakshmi 2005; Colombo et al. 2003;

Jung et al. 2017). An almost-linear distribution between the loga-
rithm of AE amplitude-frequency and AE amplitude is derived for a
data set, and the slope of a fitted line to the distribution is referred to
as the b-value. A smaller absolute b-value shows the contribution
of AE data with higher amplitudes and is expected to be related to
the damage formation. The b-values are usually calculated using
the following equation:

logN ¼ a − b

�
AdB

20

�
ð2Þ

where N = number of AE hits with a magnitude equal to or greater
than an amplitude of a hit. The linear regression is conducted be-
tween the logN and AdB=20 to calculate the model parameters
(a and b). All data are separated into a specific subset number.
Then, the b-values are calculated separately in each subset. This
method is referred to as the incremental b-value (Inc-b).

The coefficient of determination (R2) for each b-value is calcu-
lated. The coefficients may also be considered as a damage iden-
tification criterion because it is expected that severe damage
formation emits AE signals with large amplitudes. The AE signals
with large amplitudes cause a deviation from the mostly linear am-
plitude-logN distribution and, consequently, a reduction in the
coefficients of determination. The R2 is calculated for each subset
of AE data according to the following formulation:

R2 ¼ 1 −
P

n
i¼1 ðŷi − yiÞ2P
n
i¼1 ðyi − ȳÞ2 ð3Þ

where ŷi = estimated value of logN for an ith point by using the
fitted line; yi = real value of logN for the ith point; and ȳ = average
value of logN. The index n denotes the last desired data to calculate
the b-value.
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Fig. 4. Entropy calculation using signal amplitude voltage: (a) discrete voltage entropy; and (b) global voltage entropy.
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The logN versus amplitude distribution is usually not perfectly
linear, especially for large and small amplitudes (upper and lower
part of the distribution). Therefore, some researchers have proposed
to consider the upper and lower bands for the dataset (Rao and
Lakshmi 2005; Shiotani 2001). This method is referred to as the
Improved b-value in the literature. If the b-values are calculated
based on incremental intervals, the method is referred to as the in-
crementally improved b-value (Inc-Ib). The upper limit and lower
limit are defined by A2 and A1

A2 ¼ μ − α1σ and A1 ¼ μþ α2σ ð4Þ

The slope between the upper and lower limits in the logN versus
the amplitude distribution results in an improved b-value (Ib). This
calculation is based on the assumption that the distribution between
the upper and lower limits is linear

Ib ¼ ½logA1 − logA1�
½A2 − A1�

ð5Þ

In this study, instead of using the preceding equation, the aver-
age (μ) and standard deviation (σ) of each data subset is calculated,
and the data, which exceed μþ α2σ or are less than μ − α1σ, are
deleted. Then, b-values for the remaining data are calculated. The
parameters α1 and α2 range from 0.5 to 2. In this paper, α1 and α2

are set equal to unity.

Results

In this section, the results for the signal entropy and damage indices
are presented. Entropies were first calculated for the medium-scale
specimens. Then, entropies were calculated for large-scale and small-
scale specimens and compared to the results for the medium-scale
specimens. Finally, AE-based damage indices were calculated for the
medium-scale specimens.

Entropy for the Medium-Scale Specimens

Discrete voltage entropy was calculated for the medium-scale spec-
imens. The results for the confined and unconfined specimen are
presented in Fig. 5. In the data, there are some blanks without data
in which the experiment was stopped for maintenance and to check
the sensors.

As seen in Fig. 5, the range of entropy values is almost the same
for both specimens. The solid black line shows the average entropy
in 50-day intervals. The voltage entropies in each interval were
averaged, and the temporal trend of the averaged entropies is pre-
sented as solid lines in Fig. 5. The average entropies are presented
in the secondary vertical axis to show the trend of curves better.
Generally, the variation of the average entropy for both specimens
were minor. The average entropy in the confined specimen in-
creased up to 200 days and then decreased, while in the unconfined
specimen, it increased up to 150 days and then had a generally de-
creasing trend, despite some fluctuations. Fig. 6 shows the average
entropy for the 50-day intervals when using different bin sizes.
Although slight variations in entropy values with different bin sizes
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Fig. 5. Discrete voltage entropy (DVE) for medium-scale specimens, with a bin size of 0.0001 V: (a) confined specimen; and (b) unconfined
specimen.
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are observed, trends of entropy values with different bin sizes are
similar, showing the trends of voltage entropies to be insensitive to
the bin size.

The global voltage entropy was calculated for each desired time
by considering all previously recorded data from the beginning of
the test. The results for the bin size of the 0.0001 V are shown in
Fig. 7. In the confined specimen, the GVE increased up to 200 days,
and then it remained almost constant. In the unconfined specimen,
the GVE increased up to 123 days and decreased slightly after that.
The GVE remained almost constant after 180 days in the uncon-
fined specimen. The trends of GVE in both specimens were similar
to the patterns observed in DVE curves. At first, the entropy had an
increasing trend and then a decreasing trend. Furthermore, the GVE
range for the two specimens was similar, although the peak value
for the confined specimen was slightly larger than the unconfined
specimen.

The second entropy method is to calculate the entropy of counts,
namely, the counts-entropy. Two different approaches were utilized
in this paper for calculating the probability distribution. The results
for the first method (as mentioned in the section “Signal Entropy”)
are illustrated in Fig. 8. As seen in the figure, the CE rates were
much higher earlier in the experiment rather than later. The CE rates
for both specimens declined by the specimen age. The CE variation
in the confined specimen was almost constant after 200 days, while
the CE variation in the unconfined specimen was constant after
237 days. The CE values for the confined specimen were more than
for the unconfined specimens. The reason might be related to the
dependency of this method on the number of signals, which were
larger for the confined specimen.

The second method utilized for calculating the counts-entropy
was by deriving the empirical CDF and PDF of the counts; the re-
sults are presented in Fig. 9. The values for CE_CDF for both spec-
imens were almost in the same range, contrary to the CE values
(Fig. 8). Therefore, it can be concluded that the CE_CDF did
not depend on the number of hits contrary to the CE.

The CE_CDF values for both specimens had an increasing trend
and reached a peak value, followed by a decreasing trend. In the
unconfined specimen, the decreasing trend started earlier than for
the confined specimen, although there was a slight increase at
242 days for the unconfined specimen.

Voltage Entropies for Specimens with Different Scales

In this section, the voltage entropies for the three types of speci-
mens: large-scale, medium-scale, and small-scale, are discussed.
The compressive load was applied on a cement paste prism (small-
scale specimen) and stopped when the load reached 40% of the
expected ultimate capacity. The DVE was calculated for each signal
by using a bin size of 0.0001 V; the results are presented in
Fig. 10(a). The entropy ranged from 0.69 to 2.6.

The cumulative voltage entropy and CSS are presented in
Fig. 10(b). The trend of the cumulative entropy was different from
the CSS for the small-scale specimen, despite a correlation between
two parameters. The difference was clearer before the jump in the
CSS at the end of loading. The correlation coefficient between the
CSS and the cumulative entropy is 0.907. The cumulative entropy
increased with a constant rate and then experienced a sudden jump
at the end of loading. The cumulative entropy showed two phases
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of cracking in the cement paste. The first phase is potentially related
to the microcrack formation, and the second phase, at the end of
loading, is more likely associated with an unstable crack formation,
propagation, and coalescence of existing cracks and formation of
macrocracks (Anay et al. 2018).

Voltage entropies for the medium-scale and large-scale speci-
mens are presented in Figs. 11 and 12, respectively. The DVE
values for the medium-scale confined specimen ranged between
0.42 to 2.57, and the DVE values for the medium-scale unconfined
specimen ranges were between 0.4 and 2.03. The correlation be-
tween the CSS and cumulative entropy for the medium-scale and
large-scale specimens is higher than the correlation for the small-
scale specimen, as seen in Figs. 11 and 12, which might be due to
the differences in the loading and boundary conditions for the
specimens under ASR versus compressive loading. The correla-
tion coefficients between the CSS and cumulative entropy for the
medium-scale confined and unconfined specimen are 0.996. The
correlation coefficients for the large-scale confined and uncon-
fined specimens are 0.999 and 0.995, respectively.

The entropy values for the large-scale confined specimen
(Fig. 12) ranged from 0.5 to 1.4, and the entropy for the large-scale
unconfined specimen ranged from 0.46 to 1.5.

The distributions of voltage entropies for all specimens were
estimated using nonparametric kernel distribution (Wand and
Jones 1994; Epanechnikov 1969) and are presented in Fig. 13. In
addition, the PDF of the signal strength is also illustrated in
Fig. 13(b) for comparison. The variation of the voltage entropies
for all specimens is much less than the variation of the signal
strength, indicating the dimensional independence of the entropy.

The ranges of voltage entropies for the specimens with differ-
ent scales are similar. Therefore, the Shannon entropy can be

contemplated as a parameter that may be used to compare AE data
for specimens with different scales but similar boundary conditions
and sensor type. The differences in the entropy trends between
the specimens were due to different materials, boundary conditions,
loading conditions, number of sensors, and sensor types. The
specimens in this study were made of different materials. The
small-scale specimen was a cement paste prism. The confined and
unconfined medium-scale specimens were reinforced concrete
and plain concrete, respectively. The large-scale specimens were
also reinforced concrete. The cement paste material is more brittle
and more homogeneous than concrete. Consequently, the cracking
mechanism of the small-scale specimen was different from the
medium-scale and large-scale specimens. The wave scattering at the
beginning of loading in the small-scale specimen was expected to be
less than other specimens because the small-scale specimen did not
contain aggregate or reinforcement. The loading condition was also
reflected in the inconsistencies between the entropy trends. The
cement-paste was under compressive load, while no external loading
was applied on the medium-scale and large-scale specimens. The
medium-scale and large-scale specimens were exposed to the ASR
expansion, and the expansion resulted in internal strains. The ASR-
induced stresses were gradually formed in the specimens, while the
external loading on the cement paste was applied within a much
shorter time compared to the ASR process. The number of sensors
and sensor coupling also were other important factors that may in-
fluence the entropy trends. In the large-scale specimens, only three
broadband sensors were used to monitor a large volume of concrete,
while in the medium-scale specimens, a much denser sensor layout
per volume of concrete (ten sensors) was employed. The attachment
of the sensors was another potentially important factor. In the large-
scale specimens, the sensors were embedded inside the specimens
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before casting. The concrete shrinkage may reduce the contact be-
tween the sensor and concrete. However, in the medium-scale spec-
imens, the sensors were attached to the specimen surfaces using
epoxy, and constant pressure was applied to the sensors by the hold-
ers (Soltangharaei et al. 2018b). In the small-scale specimen, the
sensors were also affixed on the surfaces, using epoxy and hot glue.
The sensor types may also influence the entropy trends. The oper-
ating frequency range and sensitivity of the sensors utilized for three
specimen types were different.

b-Value Analysis

The Inc-b values and coefficients of determination of the amplitude
distributions were calculated for the medium-scale specimens

(confined and unconfined), and the results are shown in Fig. 14.
The b-values did not have a clear correlation with the CSS in either
specimen. However, the coefficients of determination illustrated a
clear correlation with the CSS. The coefficients of determination
abruptly decreased at the jumps in the CSS curve. In the confined
specimen, the sudden drops in the coefficients of determination
occurred at 174 and 207 days when the large CSS jumps happened.
In addition, in the unconfined specimen, a similar correlation was
observed. For instance, the coefficients of determination decreased
at 207 and 237 days. When severe damage happened in the
specimens, a large amount of acoustic energy was expected to be
released, which would generate AE data with strong signal strength
and amplitude. The signals that generated a large amount of energy
acted as outliers for the amplitude-logN distribution and made the
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Fig. 14. Incremental b-values and coefficients of determination of amplitude distribution for medium-scale specimens: (a) confined specimen; and
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distribution deviate more from linearity. This deviation resulted in a
lower coefficient of determination.

The incrementally improved b-values were also calculated by
deleting the data, which were outside of the average plus=minus
standard deviation (μ� σ) in each interval. The results are illus-
trated in Fig. 15. The slight reductions in the Inc-Ib values were
observed at the jumps in the CSS curve. The sudden reductions in
the coefficients of determination were more apparent than the Inc-
Ib values.

From the preceding observations, it is concluded that b-values
did not show clear temporal trends for the specimens under the
ASR-induced expansion. On the other hand, the coefficient of de-
termination can be used as an indicator to detect the occurrence of
significant damage in lieu of the b-value.

Conclusion

In this study, information entropy was calculated using different
methods for the AE data recorded during the ASR process, and
comparisons have been made between different methods. The effi-
cacy of entropy for damage detection of concrete structures affected
by ASR was evaluated in addition to studying the temporal evolu-
tion of entropies in the specimens. Moreover, an application of in-
tensity, b-value analysis, and CSS gradient was evaluated for the
concrete specimens affected by the ASR without external loading.
The following are the conclusions drawn from the study:
• Although there were only minor variations in the discrete volt-

age entropy values, a trend was observed in the average values
of the entropy in terms of the experiment time. The average en-
tropy values initially showed an increasing trend, followed by a
decreasing trend. The decreasing trend started earlier for the

unconfined medium-scale specimen than the confined speci-
men. A similar trend was also observed in the global voltage
entropy and counts-entropy using CDF for the medium-scale
specimens. The entropy initially increased and then decreased
or stayed constant at the later stages of ASR (after 200 days and
150 days for the confined and unconfined specimens). The in-
formation entropy quantifies the randomness of events. In this
context, the randomness of events initially increased in the spec-
imens and later decreased. At the earlier ASR stage, the micro-
cracks randomly occurred inside the specimens. The random
microcrack formations were reflected in the increasing entropy
values. As the ASR progressed, the macrocracks formed in
specific locations with a larger stress concentration and less
strength. Therefore, the occurrence of macrocracks was less ran-
domized. Therefore, entropy had a decreasing trend at this stage.

• The variations of the b-values in terms of time for the confined
and unconfined specimens were almost constant, and the
b-values did not show any obvious temporal trend. However,
a correlation was observed between the coefficient of determi-
nation and the CSS curves. The coefficients of determination
dropped as the CSS jumps, which indicates that the coefficients
of determination were more sensitive to the damage formation
than b-values. The coefficients of determination were dropped
to less than 92% at the large jumps in the CSS curves. The use of
coefficients of determination is recommended for the ASR dam-
age identification in time.

• Comparing the discrete voltage entropies for different speci-
mens, it was observed that entropy ranges were not significantly
changed by the specimen scale, boundary and loading condi-
tions, and specimen types. Therefore, this parameter may hold
promise as an alternative for the comparison of the damage con-
ditions between different structures in terms of AE data.
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Fig. 15. Incremental improved b-values and coefficients of determination of amplitude distribution for medium-scale specimens: (a) confined speci-
men; and (b) unconfined specimen.
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