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A B S T R A C T   

Alkali-silica reaction (ASR) is one of main damages causes in concrete structures such as nuclear power plants which may endanger structural serviceability and 
integrity. Acoustic emission (AE) is a passive nondestructive method for structural health monitoring. It is very sensitive and has the capability of monitoring 
structures continuously. This method may be an alternative for early damage detection in concrete nuclear structures affected by ASR. The innovation of this paper 
lies in the implementation of deep learning algorithms to evaluate the ASR progress. ASR was monitored by AE in a concrete specimen, which was cast with reactive 
coarse aggregates and reinforced by steel rebars. The AE signals recorded during the experiment were filtered and divided into two classes. Two deep learning 
algorithms of convolutional neural network (CNN) and stacked autoencoder were employed to classify the AE signals into the corresponding classes. The model based 
on CNN resulted in a classifier with higher accuracy than the model based on the autoencoder network.   

1. Introduction 

Concrete is one of the important infrastructure materials which is 
wildly applied in civil engineering structures. However, the brittle me-
chanical property of concrete makes it vulnerable to cracking. ASR is 
one of the main sources of cracking in concrete structures. ASR is a 
chemical reaction between silica in reactive aggregate and alkaline ions 
in cement. The product of this reaction is a hygroscopic gel, which ab-
sorbs humidity and expands (Soltangharaei et al., 2018b). The gel exerts 
pressure on the aggregate and cement matrix, and causes cracking. The 
common structures, which are exposed to ASR are bridges (Bach et al., 
1993; Bakker, 2008; Clark, 1989; Schmidt et al., 2014), concrete dams 
(Campos et al., 2018; Plusquellec et al., 2018), nuclear power plants, 
and nuclear waste containments (Saouma and Hariri-Ardebili, 2014; 
Soltangharaei et al., 2018a; Takakura et al., 2005; Tcherner and Aziz, 
2009). Because of the safety and radioprotection functions of concrete 
structures in nuclear power plant, the effects of ASR to current and long- 
term operations must be thoroughly addressed. 

Many approaches were applied to monitor ASR damage and evaluate 
its effect on structures. The conventional approaches include regular- 
base visual inspection, coring and petrographic analysis, demountable 
mechanical strain gauge (DEMEC gauge), relative humidity or moisture 
content measurement, and crack indexing. These approaches have 
several disadvantages. For example, visual inspection is usually not 
effective for the early detection of ASR damage. Generally, due to in- 
plane constraints of structures, the surface cracks appear in a late 
stage of ASR process, and the visual inspection of large-scale structures 

is time-consuming and prone to human error (Rajabipour et al., 2015). 
Coring and petrographic analyses are destructive methods that are 
generally not suitable for sensitive structures such as nuclear power 
plants. Furthermore, it is difficult to evaluate the condition of entire 
structure with only a few cores or samples. 

AE can be an alternative for the temporal evaluation of ASR damage 
in concrete structures used in nuclear facilities. This method is sensitive 
and has a continuous monitoring capability (Anay et al., 2020, 2018; 
Assi et al., 2018; Li et al., 2017; Ono, 2011; Soltangharaei et al., 2020a, 
2020b). Recently, there have been several investigations conducted 
where AE was applied for the detection of damage and the quantification 
of the defects caused by ASR (Abdelrahman et al., 2015; Ai et al., 2021a; 
Farnam et al., 2015; Lokajíček et al., 2017; Soltangharaei et al., 2020a, 
2018b; Weise et al., 2012). Farnam et al. (2015) utilized peak frequency 
and frequency centroid to characterize signal signatures that emanate 
from cracks in aggregates and cement paste. High-frequency signals 
were observed in the earlier stage of ASR, while the low-frequency 
signals appeared later in the ASR process. X-ray images helped the au-
thors to verify their hypothesis. Lokajíček et al. (2017) utilized both 
ultrasonic pulse velocity and AE to monitor the damage caused by ASR. 
Four specimens with different aggregate reactivities were used. The 
selection of the appropriate features was generally based on experience 
and very challenging especially for complex data sets. Therefore, an 
automatic approach is required to extract features directly from raw 
data and find potential patterns in the complex data sets. This goal can 
be fulfilled by using deep learning methods. 

Deep learning is one of the artificial intelligence techniques that 
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simulates information processing in the human brain (Goodfellow et al., 
2016; Ruixiao Sun et al., 2021). The advantage of deep learning is using 
raw data instead of extracted features as an input set. Therefore, there is 
no need for feature extraction and feature selection, which can be 
challenging for complex data sets (Sadoughi et al., 2018). CNN is one of 
the state-of-art deep learning algorithms (Guo et al., 2021; Khan et al., 
2020; Redmon and Farhadi, 2018; Ren et al., 2016), which develops 
rapidly, and is widely studied in image recognition and target detection. 
Ren et al. (2017) proposed a faster R-CNN (Region-based CNN). This 
new target detection model presented a Region Proposal Network (RPN) 
based on a Fast R-CNN, which significantly increases the efficiency of 
target detection. Redmon et al. (2018) proposed Yolov3 as an improved 
architecture of Yolo network. This improved architecture has higher 
accuracy, and training speed is acceptable. In addition to design a 
deeper architecture of CNN, using a hybrid method is another strategy to 
improve the performance of CNN (Kim and Cho, 2019; Niu and Suen, 
2012). Niu et al. (2012) presented a hybrid model based on CNN and 
Support Vector Machine (SVM) to recognize the handwriting digits. In 
the hybrid model, the convolutional layers extract features, and the SVM 
works as a recognizer. The results indicated that this fusion could obtain 
better accuracy than a single model. Kim et al. (2019) proposed a hybrid 
model for the prediction of residential energy consumption. The hybrid 
model consisted of CNN and a long short-term memory network (LSTM). 
The convolutional layers could extract features from complex variables 
that affected energy consumption. The LSTM layers were designed to 
model the temporal information of irregular trends in time series com-
ponents. Compared with the previous work, a better performance was 
observed by using the proposed hybrid model. 

In recent years, deep learning has been applied in AE (Ai et al., 
2021b; Ebrahimkhanlou et al., 2019; Li et al., 2020; Shevchik et al., 
2018). Ai et al. (2021b) developed a passive nondestructive health 
monitoring system to locate impacts on an aircraft component based on 
AE and deep learning. An autoencoder algorithm was trained by the data 
and utilized as a part of the health monitoring system. Ebrahimkhanlou 
et al. (2019) worked on a deep learning framework based on a stacked 
autoencoder network to locate AE events on the metal structures. Li 
et al. (2020) utilized a convolutional neural network for AE wave clas-
sification to obtain a more accurate and comprehensive rail crack 
monitoring in the field with complex cracking conditions, high- 
operational noise, and large data. Shevchik et al. (2018) proposed an 
on-site quality monitoring system for additive manufacturing by utiliz-
ing AE and a spectral convolutional neural network. 

The main focus of this paper is to relate AE data collected during ASR 
process and attribute them to ASR expansion strains. CNN and autoen-
coder networks were used to develop data-driven models and relate raw 
data to classes, which were corresponding to strain ranges. Using this 
method, sensitive structures such as nuclear power plants or waste 
containments can be continuously monitored for ASR cracking without 
interrupting the structural serviceability and destructing the structures. 
Furthermore, ASR process phases can be determined using a developed 

data-driven model. The authors are currently not aware of any published 
similar works that implement a deep learning algorithm to relate AE 
data to ASR expansion strains. 

2. Test setup and experimental procedure 

A concrete block specimen with the dimensions of the 305 mm ×
305 mm × 1120 mm was prepared for ASR testing. The specimen was 
cast with reactive coarse aggregates and reinforced by steel rebars. The 
geometric of the specimen is shown in Fig. 1a. The detail of the re-
inforcements is presented in Fig. 1b. The specimen had four longitudinal 
US #7 steel rebars and transversal US #6 steel rebars with 150 mm 
spacing. All rebars were T-headed to compensate for the short devel-
opment length. 

Ten AE sensors were attached to the surfaces of the specimen using 
grey double/bubble epoxy. The sensor layout is presented in Fig. 1a 
(Soltangharaei et al., 2020a). Three sensors (sensor 8–10) were attached 
to the front longitudinal side surface. Three sensors (sensor 5–7) were 
attached on the back longitudinal side surface. Two sensors (sensor 1–2) 
were attached on the top, while sensors 3–4 were attached to the bottom 
surface. The sensors were PKWDI with an operating frequency of 
200–850 kHz. AE signals were acquired by a 24-channel Micro-II Ex-
press data acquisition system manufactured by MISTRAS Group, Inc. 
(Princeton Junction, NJ, USA). The sampling rate was set to 5 MHz. 

A chamber with the dimensions of 243 cm (width) × 243 cm 
(length) × 122 cm (height) was designed and built to accelerate the ASR 
process by providing high temperature and humidity. The temperature 
inside the chamber was kept at 37 ± 3 ◦C. The humidity was kept around 
95% ± 5%. The specimen was placed on a steel carrier with wheels, 
which was designed and fabricated as the support of the specimen. 
DEMEC gauges were used for the expansion measurement by measuring 
the distance between pins (Fig. 1a) along three dimensions. The 
expansion was measured regularly every month, and the maintenance of 
AE sensors was conducted at the same time to ensure the bonding status 
between sensors and specimen. More details about the test setup and 
procedures can be found in (Soltangharaei et al., 2020a). 

3. Analysis procedure 

In this paper, two methods based on deep learning were proposed to 
evaluate ASR in concrete. One is based on continuous wavelet trans-
forms (CWT) and CNN. The other one is based on a stacked autoencoder 
network. The AE signals are divided into two subsets according to the 
temporal evolution of signal features. Each subset of data can be 
attributed to an ASR expansion range. The data-driven models are 
developed using CNNs and stacked autoencoders to attribute the AE 
signals to the corresponding subsets. 

Fig. 1. Structural details of specimen.  
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3.1. Continuous wavelet transform 

CWT is a joint time–frequency analysis method that captures the 
time–frequency characteristics in non-stationary signals such as AE 
signals (Gou et al., 2020). CWT has a good performance in signal pro-
cessing in terms of both time and frequency (Li et al., 2018). The 
continuous wavelet coefficients can be expressed by a scalogram image. 
The 2D scalogram images are the input for CNN models. In this paper, 
the Morse wavelet is selected as the mother wavelet function to conduct 
CWT. The Fourier transform of Morse wavelet is presented in Eq (1): 

Ψp,γ(x) = U(x)αp,γx
p2
γ e− xγ (1)  

where U(x)refers to the unit step, αp,γ refers to the normalizing con-
stant, p2 refers to the time-bandwidth product.γ is the parameter that 
characterizes the symmetry of the Morse wavelet (Lilly and Olhede, 
2008). In this paper, p2 and γ was defined as 60 and 3. 

3.2. Convolutional neural network 

CNN is a deep neural network with convolutional filters (Krizhevsky 
et al., 2012). CNN is generally composed of three main parts: an input 
layer, feature extraction layers, and a fully connected layer. The core 
part of the feature extraction layers mainly includes convolutional layers 
and pooling layers. The architecture of a typical CNN with two con-
volutional layers and two pooling layers is shown in Fig. 2. 

In the convolutional layer, multiple convolutional kernels are 
employed to filter the input and generate feature maps. The pooling 
layer is used for the down-sampling of feature maps obtained from the 
previous convolutional layer (Yongyi Sun et al., 2020). If the image 
feature maps are directly used for classification without any processing, 
a great computational complexity will be generated, and the model is 
prone to overfitting. Therefore, a further reduction in the dimensionality 
of feature maps is required, which is the reason to construct the pooling 
layer after each convolutional layer. The fully connected layer is 
employed at the end of the CNN model. It converts the feature maps, 
resulting from the previous pooling layer, to one feature vector. 

GoogLeNet is an architecture of CNN that developed based on the 
LeNet model (Szegedy et al., 2015). The number of layers is extended up 
to 22. The GoogLeNet model is pre-trained by more than a million im-
ages from a subset of ImageNet database (Deng et al., 2009). GoogLeNet 
has been reported to have a good performance for the identification of 
acoustic emission signals in the scenarios such as the monitoring of wear 
in sliding bearing system (König et al., 2021a, 2021b) and the moni-
toring of stay cable in a bridge (Xin et al., 2020). Therefore, GoogLeNet 
was selected in this paper as a preliminary study of applying CNN to 
evaluate concrete ASR expansion. 

In this paper, the input data is 2D wavelet images. Before input 
datasets, the data is labeled and normalized. The wavelet coefficients are 
scaled between 0 and 1. 

3.3. Stacked autoencoder 

The stacked autoencoder is also employed to classify the data, and 
the results are compared to CNN. The stacked autoencoder neural 
network is a deep neural network composed of multiple autoencoders 
(Bengio et al., 2007). An autoencoder is a neural network usually with 
three layers. The number of neurons in the input and output layers is the 
same. The algorithm condenses the input data according to the dimen-
sion of the hidden layer and reconstructs the output of condensed data to 
the output layer (Ng and Autoencoder, 2011). An objective function is 
designed to minimize the error in input data and output data. The 
compression process of input data can be considered as the feature 
extraction process. In stacked multiple autoencoders, more than one 
autoencoder is utilized to condense the data. In other words, the data is 
condensed several times by multiple autoencoders. A SoftMax layer is 
connected to the last autoencoder to classify final compressed features. 
In this paper, a stacked autoencoder with two autoencoders is employed. 
The input data is the Fast Fourier Transforms (FFT) magnitude of the AE 
waveforms. In other words, the input data set includes a matrix with 
rows representing the number of signals and columns representing FFT 
magnitudes of signals. The first and second autoencoder has a size of 100 
and 50 neurons, respectively. Fig. 3 illustrates the structure of the 
stacked autoencoder network used in this paper. 

4. Results and discussion 

4.1. Analysis of features and class definition 

The AE data acquired from the sensors during ASR have been utilized 
for analysis. Some sensors collected a large amount of extraneous data 
due to faulty connections and environmental noise. Therefore, the first 
step before analyzing the AE data is filtering. The noises from faulty 
connections have specific signal features such as small counts, average 
frequency, and peak frequency. Initially, the noises related to the faulty 
connections were removed by deleting the data with an average fre-
quency lower than 60 kHz. Some faulty data remained from the first 
stage. Therefore, another filter was applied to the contaminated channel 
by removing the signals with a peak frequency of less than 80 kHz. The 
filtering procedure mentioned above removed a large amount of faulty 
data. Then, a procedure was developed to further filter the data based on 
AE event definition. An AE event refers to a set of hits acquired by 
different sensors in a specific time interval, which is defined based on a 
stress wave velocity and specimen dimensions. Only the events which 
include at least four hits were considered valid data and kept, and the 
rest of the data was considered as noise and was therefore deleted. 

Several AE features were extracted from the AE signals after filtering. 
Those features can be divided into non-frequency-based features and 
frequency-based features. The non-frequency-based features in this 
paper are counts, counts to peak, amplitude, rise time, duration, and 
signal strength. The non-frequency-based features are presented for a 
typical AE waveform, as shown in Fig. 4a. 

To extract the frequency-based features, the AE signals were 

Fig. 2. Architecture of a typical CNN.  
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transferred to the frequency domain using FFT. The frequency domain of 
each signal was divided by ten equal intervals with a bandwidth of 40 
kHz. The energies corresponding to each frequency band were derived 
by calculating the area under the FFT spectrum in that frequency band 
(Fig. 4b). The energies in the frequency bands were normalized to the 
total energy of the signal, which was calculated by the area under the 
entire FFT spectrum (Fig. 4b). These normalized energies for different 
frequency bands are referred to as frequency-based features in this 
paper. Fig. 4b shows the extraction of frequency-based features in the 
range of 80–120 kHz. 

The average temporal evolution of some features such as counts, 
counts to peak, amplitude, signal strength, signal energy for 0–40 kHz, 
and signal energy for 80–120 kHz are illustrated in Fig. 5. All the fea-
tures were normalized to 0–1. The features shown in Fig. 5 indicate the 
change in the temporal evolution at almost the same time, around 190 to 
200 days. The ASR process can be divided into two phases (phase 1 and 
phase 2) according to the observed trend. 

The signal amplitudes and the cumulative signal strength (CSS) for 
the concrete specimen are presented in Fig. 6a. The jumps in the cu-
mulative signal strength curve are representative of a new crack initia-
tion event or a crack extension along an existing crack. The major jump 
occurs around 200 days, which coincides with the time related to change 
in the AE features shown in Fig. 6. Therefore, day 190 was employed to 
divide the ASR process into the first and second phases. The phase 
definition is deployed as the label of AE signals in the deep learning 
models. The models will classify the input AE signals into two classes 
according to the phase definition (phase 1 and phase 2). 

The strain measurements were conducted along different dimensions 
on the specimen surfaces during ASR. The volumetric strain is defined as 
the accumulation of average strains along the X, Y, and Z axes. Results of 
the volumetric strain range are presented in Fig. 6b. In phase 1, the 
strain range changes from 0% to 20%, and in phase 2, the strain range 
changes from 20% to 55%. 

4.2. Waveforms and CWT images 

There are 1668 and 1402 AE signals in classes 1 and 2, respectively. 
The input set for the stacked autoencoder was FFT spectra of AE signals. 
The other data set was prepared by conducting CWT on the data. The 
coefficients of CWTs were saved as 2D contour images, and the images 
were utilized as an input data set for CNN. Both deep learning models 
(autoencoder and CNNs) classify the AE signals into the attributed 
classes. A time-domain waveform and its FFT spectrum are randomly 
selected for each class and presented in Fig. 7. Moreover, the CWT im-
ages of the signals are presented in Fig. 8. The amplitudes of AE wave-
forms were normalized to a range of − 1 to 1. The frequency-domain 
waveforms were normalized by the maximum magnitudes, and the 
wavelet coefficients were scaled between 0 and 1. 

4.3. Evaluation of ASR data using CNN 

4.3.1. Classification using all AE signals 
From all CWT contour images, 70% of images were randomly 

selected for a training set of CNN, and 30% of images were randomly 
selected for a validation set. The designated phases (phase 1 or 2) of the 
AE signals were utilized as data labels. The classification result of the 
validation dataset is presented in the confusion matrix (Fig. 9a). Among 
the CWT images in phase 1, 74.6% of images were correctly classified as 
phase 1, while 25.4% of images were classified as phase 2. Among the 
images in phase 2, 80.2% of them were correctly classified, while 19.8% 
of images were misclassified as phase 1. In total, 707 images were 
correctly classified to the corresponding phases, which was 76.7% of all 
images in the validation data set. In other words, the accuracy of the 
CNN classifier is 76.7% (Fig. 9a). Precision and recall are employed as 
parameters to evaluate the classification performance in each phase. 
Generally, precision can be calculated by Eq. (2): 

Fig. 3. A stacked autoencoder composed of two autoencoders.  

Fig. 4. AE features.  
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Precision =
TP

TP + FP
(2)  

where, TP, is the true positive, which refers to the number of samples 
correctly classified to the attributed class. FP is the false positive, which 
refers to the number of samples that do not belong to the class and are 
misclassified into the class. The precisions of CNN model using all AE 

data for classes 1 and 2 are 85.5% and 66.8%, respectively (Fig. 9a). 
The recall parameter can be calculated as follows: 

Recall =
TP

TP + FN
(3) 

where FN is the false negative, which is the number of samples that 
belong to a class but are misclassified as other classes. The recall 

Fig. 5. Temporal evolution of AE features during ASR process.  

Fig. 6. AE amplitudes and volumetric strain presentations with designated classes.  
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Fig. 7. Waveforms of AE signals in Phase 1 and 2.  

Fig. 8. CWT image of AE signals in class 1 and 2.  

Fig. 9. Performance of CNN using all AE signals:  
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parameter of the CNN model for classes 1 and 2 was calculated as 74.6% 
and 80.2% (Fig. 9a). 

The precision parameter has an inverse relationship with the recall 
parameter. Generally, a class with a high precision value has a low recall 
value and vice versa (Buckland and Gey, 1994). F1-score is a parameter 
to evaluate the efficiency of the classifier in each phase (class) by 
considering both recall and precision parameters. The F1-score is the 
harmonic mean of the precision and recall (Zhong et al., 2019). The 
values of the F1-score for phase 1 and phase 2 are 79.7% and 72.9%, 
respectively, and presented in Fig. 9b. 

4.3.2. Classification using AE signals recorded by a single sensor 
A CNN model was developed using the data from one sensor. The 

selected sensor (sensor 6) had the largest number of AE signals (421) 
among all sensors. AE signals were transferred to CWT images. Among 
all images, 70% of the data were randomly selected for the training set, 
and the rest (30%) were employed for the validation set. The result of 
the CNN model is presented in Fig. 10a. Among the images in phase 1, 
85.5% of images were correctly classified as phase 1, and 14.5% of 
images were misclassified as phase 2. Among the images in phase 2, 
86.0% of images in phase 2 were successfully classified, and 14.0% of 
images were erroneously assigned to phase 1. The total accuracy of the 
model is 85.7% (Fig. 10a). The precisions of phases 1 and 2 are 90.2% 
and 79.6%, respectively (Fig. 10a). The recall parameters for phases 1 
and 2 are 85.5% and 86.0%, respectively (Fig. 10a). The F1-score for 
phases 1 and 2 are 87.8% and 82.7%, respectively (Fig. 10b). 

4.4. Evaluation of ASR using stacked autoencoder 

The FFT magnitudes of AE signals were employed as the input for the 
stacked autoencoder models. The ratios of training and validation data 
for the autoencoder models were consistent with the selected ratios for 
CNN models. The assigned classes (phases) for the AE signals were uti-
lized as the data labels, similar to the CNN models. The results are 
presented in Fig. 11. The accuracy of classification using all signals is 
72.6%. The precision parameters for phases 1 and 2 are 76.1% and 
68.4%, respectively. The recall parameter for phases 1 and 2 are 74.6% 
and 70.1%, respectively (Fig. 11a). The F1-score parameter for phases 1 
and 2 are 75.4% and 69.2%, respectively (Fig. 11b). The total accuracy 
of classification for the autoencoder model using signals from a single 
sensor is 80.2%. The precision values for phases 1 and 2 are 87.8% and 
61.1%, respectively. The recall values of phases 1 and 2 are 84.9% and 
66.7%, respectively (Fig. 11c). The F1-score values for phases 1 and 2 
are 86.3% and 66.4%, respectively (Fig. 11d). 

4.5. Comparison and discussion 

Two shallow machine learning methods, Support Vector Machine 

(SVM) and K-Nearest Neighbor (KNN) were also utilized to correlate AE 
signals to ASR expansion, and the results were compared with the deep 
learning models. The input data of the machine learning models are the 
parametric features extracted from the AE waveforms. The names of the 
features and their description are presented in Table 1. According to the 
accuracies observed in CNN and stacked autoencoder, the model trained 
by signals from a single sensor indicated a higher accuracy than the 
models using all signals. Therefore, in this paper, the SVM and KNN 
models were trained and tested by the signal features from the single 
sensor. 

In this paper, the RBF was selected as the kernel function of SVM 
(Scholkopf et al., 1997). The “K” for the KNN model was set to 4 after 
conducting serval trial and error tests. The classification accuracies of 
CNN, stacked autoencoder, SVM, and KNN are presented in Table 2. The 
CNN models have higher classification accuracies than the autoencoder 
model, and the deep learning methods have higher accuracies than the 
two shallow machine learning methods. The accuracy of the CNN model 
using the data from a single sensor is the highest among the evaluated 
methods (85.2%). Computing time is evaluated for the models. The 
average time required for training and the average time to classify a 
single signal in the test dataset are presented in Table 2. The training 
time for CNN process (using GPU-GTX-1080) is significantly more than 
the training times for the other models using intel i7-6700 CPU. How-
ever, the times for the trained models to classify a single AE signal are 
almost similar, as shown in Table 2. All the trained models can finish 
their task within 0.1 s. For the application envisioned, the model will be 
trained offline; therefore, the training time will not be a primary 
concern. 

The F1-scores parameters for the four proposed models are presented 
in Fig. 12. F1-score values of the CNN model using data from the single 
sensor are generally the highest, and they are relatively consistent be-
tween the two classes (Fig. 12). However, a notable difference of F1- 
scores in the two classes can be observed in the autoencoder models 
(Fig. 12). 

The CNN model using data from the single sensor has the highest 
accuracy and the most consistent performance among the two classes. 
Therefore, the CNN model is a better option to estimate the range of ASR 
volumetric strains from AE signals than the autoencoder models. 

5. Summary and conclusions 

The evaluation method based on deep learning is proposed to assess 
the condition of ASR progress in concrete structures. To verify the 
effectiveness of the proposed method, a concrete specimen with reactive 
coarse and reinforcements was cast and placed in a chamber for 300 
days to accelerate the ASR by providing high temperature and humidity. 
AE sensors were affixed on the specimen surfaces to acquire stress waves 
emitted during the ASR due to cracking. The ASR expansion was 

Fig. 10. Performance of CNN model using data from a single sensor.  
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measured using DEMEC gauge on a regular basis. A CNN and stacked 
autoencoder models were trained using the AE data for classification 
purposes and determining ASR volumetric strain ranges. The main 
conclusions of the paper are summarized as follows:  

• Both CNN and stacked autoencoder can classify the AE signals to 
their ASR phases with acceptable accuracy, while a higher accuracy 
was observed in the classification using the CNN than stacked 
autoencoder. In addition, using AE signals from a single sensor leads 
to a better performance of classification than using signals captured 
by all the sensors.  

• The F1-scores indicated that the classification result of CNN using 
signals from a single sensor has the best performance in both phases 

(classes). Moreover, good consistency of F1-scores between two 
phases was observed for the CNN models. 

• Considering computing time, global accuracy, and classifier perfor-
mance in two phases, the CNN model using the data from a single 
sensor is the most efficient model among the evaluated models to 
monitor the temporal evolution of the concrete specimen affected by 
ASR. 

ASR data accessibility for real concrete structures is one of the 
practical issues for training a supervised learning method. Future 
research could focus on either the novel AE data augmentation method 
or utilizing a numerical model to generate sufficient training data. 

6. Data availability 

The raw/processed data required to reproduce these findings can be 

Fig. 11. Performance of stacked autoencoder.  

Table 1 
Descriptions of the input parametric features.  

Parametric features Feature descriptions 

Amplitude Energy The peak amplitude of AE waveform The measure of the 
electrical energy measured for an AE signal 

Count Counts to peak 
(PCNTS) 

The number of threshold crossings The number of 
threshold crossings from the first threshold crossing to 
the peak 

Rise time The time interval between first threshold crossing and 
peak 

Duration The time between the first and last threshold crossing 
Average frequency Signal 

strength 
Counts divided by Duration A parameter to characterize 
the overall frequency content of an AE signal 

Absolute energy The absolute measure of the electrical energy measured 
for an AE signal 

Peak frequency Frequency of maximum signal contribution 
Reverberation frequency Frequency after the peak 
Initial frequency Frequency before the peak 
Signal strength Integral of the rectified voltage signal over the duration 

of the AE waveform  

Table 2 
Accuracies and computing times of all the models.  

Models Accuracy Training 
Time (s) 

Testing 
time (s) 

Platform 

Stacked autoencoder 
(all signals)  

72.6%  377.64  0.04 CPU i7- 
6700 

Stacked autoencoder 
(signals from a single 
sensor)  

80.2%  219.57  0.03 CPU i7- 
6700 

CNN (all signals)  76.7%  1562.12  0.08 GPU 
GTX1080 

CNN (signals from a 
single sensor)  

85.2%  612.36  0.06 GPU 
GTX1080 

SVM (features from a 
single sensor)  

71.2%  2.51  0.01 CPU i7- 
6700 

KNN (features from a 
single sensor)  

69.2%  1.64  0.01 CPU i7- 
6700  
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