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ABSTRACT 

Impact is a threat to the operational safety of aircraft. A real-time intelligent impact monitoring 
system can supplement or potentially replace traditional visual inspections and greatly improve 
the efficiency of aircraft maintenance. In this paper, A smart sensing system based on acoustic 
emission sensors is proposed for the assessment of impact damage level and location. To meet the 
demands of the operational environment of aircraft, it is desirable to employ a minimal number of 
acoustic emission sensors in the sensing system while still effectively assessing impact damage. 
To accomplish this goal, a stacked autoencoder algorithm is utilized to classify impact damage at 
different levels, meanwhile localizing the impact with high accuracy. The proposed system is 
validated by an impact experiment applied on a thermoplastic composite aircraft elevator in a 
laboratory setting. Results demonstrate the efficacy and potential of the proposed smart sensing 
system. 
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1. INTRODUCTION 
In-flight impact damage is one of the major threats to the structural integrity of aircraft composites. 
Traditional visual inspection is widely used to assess impact damage. However, it is time-
consuming and prone to human error. Due to the development in sensing technique and data 
processing approach recently, a structural health monitoring system can now be employed to 
localize the impact and assess the damage automatically. This can be done either in addition to or 
as a partial replacement for visual inspection. 

Acoustic emission (AE) is a structural health monitoring method that is extremely sensitive to 
damage propagation in materials [1-4]. The application of AE monitoring for fiber composite 
material has been explored by previous studies [for example, 5-8]. Eaton et al. [5] investigated the 
characterization of damage in composite materials using AE. An approach for damage 
characterization by measuring the amplitude ratio (MAR) of the two primary Lamb wave modes 
has been developed. Shahri et al. [6] worked on the damage evaluation of composite materials 
using AE. The authors proposed a method based on the Hilbert transform to correlate AE signals 
to their corresponding failure mechanisms. Dia et al. [7] utilized AE to characterize the damages 



in a hybrid laminate aluminum during quasi-static and fatigue tests. Principal Components 
Analysis (PCA), k-means unsupervised clustering analysis were utilized for the damage 
identification. Khamedi et al. [8] identified failure mechanisms of unidirectional carbon/epoxy 
composites by studying the wavelet packet transform of AE signal processing. The AE signals 
were converted to wavelet and then comparing with the Scanning electron microscope (SEM) 
observations. The results indicated that the wavelet transformed from the AE waveform could link 
to the damage mechanisms of unidirectional carbon/epoxy composites. 

AE has also been investigated for the monitoring of the impact on fiber composite materials [for 
example, 9-10]. Mal et al. [9] utilized AE to detect low-velocity impacts on graphite-epoxy 
composite plates. The response of the plate was approached through a modified lamination theory 
to obtain detailed information on the relationship between the impact load and the signals. The 
results indicated that the occurrence of an impact loading can be easily detected from AE signals 
and delamination damage can be determined by analyzing the waveforms of the recorded AE 
signals. Saeedifar et al. [10] utilized several AE sensors to monitor the impact damage in carbon 
epoxy laminates under quasi-static indentation and low-velocity impact. They indicated that AE is 
an efficacious technique for detecting the barely visible impact damage (BVID) in composite 
materials.   

The aforementioned studies have proven that AE monitoring of the impact on fiber composite 
materials is promising. However, the challenge of this approach to be applied on aircraft is to 
deploy a minimal number of AE sensors on the aircraft due to the environmental restriction during 
the operation of aircraft, while still effectively evaluate the impact damage. Machine learning 
algorithms, therefore, could be alternative methods to solve the problem. Artificial neural networks 
(ANN) and random forests have been utilized to localize the impact events with a minimal number 
of AE sensors [11-12]. In previous works, Soltangharaei et al. [11] proposed a system to locate 
impacts on aircraft components using one AE sensor. AE features were utilized as inputs to the 
ANN and source localization results were obtained as outputs. The results demonstrated that the 
impact localization using AE and ANN can provide reasonable localization results while satisfying 
weight and power restrictions. Ai et al. [12] further investigated the single sensor impact 
localization on aircraft components by employing a random forest algorithm. Results indicating 
random forest could achieve a better localization than ANN. However, these works only focused 
on impact localization, while the identification of impact damage was not investigated. 

In this paper, the impact damage identification was explored. A larger number of AE signals was 
recorded by applying the impacts with two different levels of energy. The decision tree and 
AdaBoost algorithms were implemented for impact energy identification and impact localization.  

2. METHODOLOGY 
In this paper, an impact assessment approach for aircraft composite components was proposed. 
AE technique was leveraged to monitor the impact events. The impact damage level on panels was 
identified by decision three. The localization of impact was considered as a classification problem. 
The impacts will be localized to their corresponding zone. The four zones definition is presented 
in Figure 4. 



2.1 Acoustic Emission  
Acoustic emission is a physical phenomenon, which is related to the stress wave generated by the 
rapid release of elastic energy when cracks or damages form in materials. AE signals can be 
detected and collected by deploying AE sensors on the surface of an object. The method of 
recording and processing AE signals to diagnose the health status of an object is referred to as AE 
monitoring. By processing the AE signal, different AE features can be extracted. Schematic 
representations of commonly used AE features such as “Amplitude”, “Counts”, “Counts to peak”, 
“Rise time” and “Duration” is shown in Figure 1. 

 
Figure 1. Schematic of acoustic emission approach 

2.2 Decision tree and AdaBoost algorithm 
The Boosting algorithm is an assemble learning technique that can enhance several weak learning 
models with a prediction accuracy that is only slightly higher than the random guess to a strong 
model with high prediction accuracy [13]. In cases where it is very difficult to directly construct a 
strong learning model, this technique provides an effective method for the design of learning 
algorithms. AdaBoost one of the most popular boosting algorithm. In AdaBoost, the subsequent 
weak learners are updated by weight in favor of the information provided by previous learners. At 
the end of the iterations, a strong learning model is generated [14]. 

The decision tree was employed as a weak model in the AdaBoost localization approach that 
applied in this paper. A decision tree can be constructed based on the classification threshold of 
each feature in the input data. At each node of the tree, the leaf node of the next layer is branched 
through a criterion according to the performance of the features. With layer-by-layer branching, 
the sample categories included in the leaf nodes will gradually become consistent, and the terminal 
leaf node is the classification result of the decision trees [15]. In AdaBoost, the decision tree with 
the lowest error is selected as the optimized tree that is implemented in the AdaBoost mode. The 
procedural flow of the AdaBoost model utilized in this paper is shown in Figure 2. AE parametric 
features are extracted from the AE signals and implemented as input. The final localization result 
is given by the model after the iterations of M decision trees.  
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Figure 2. The mechanism of the AdaBoost model 

3. EXPERIMENTATION 
In this paper, a real-size elevator specimen was employed for the impact experiment. The 
dimension of the specimen is presented in Figure 4. The panels of the thermoplastic elevator are 
fabricated by a composite polymer made from two different materials: 5-H carbon polyphenylene 
sulfide (PPS) fabric and plain weave carbon PPS fabric. In the impact experiment, the elevator 
specimen was mounted on a steel test frame which is shown in Figure 3a. To simulate different 
impact damage levels that the elevator suffered during the flight, two steel spheres with different 
diameters (0.006 meters and 0.013 meters) were utilized to impact the elevator specimen. The drop 
height was kept constantly at 0.61 meters. A guide tube was employed to control the impact 
locations and the dropping height of each impact. The impact energy from two steel spheres is 
0.006 J and 0.05 J. They were defined as impact level-I and level-II in this paper. The procedure 
of the steel sphere impact experiment is presented in Figure 3b.  The impact location on each panel 
is presented in Figure 4 as a redpoint. Each location was impacted 60 times by the steel spheres. 
The dropping if the steel spheres were conducted from the left to the right of the elevator specimen. 
The impact experiment was monitored by a single AE sensor attached to the front spar of the 
elevator. 
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Figure 3. Steel sphere impact test: (a) Test frame setup; (b) Steel sphere impact procedure 

 

Figure 4. Impact and sensor locations 

4. RESULTS 
4.1 Data preparation 
The data preparation was conducted for the AE signals recorded during the impact experiment. 23 
parametric features were extracted from the signals and formed a feature dataset. They are 
“Amplitude”, “Duration”, “Rise time”, “Counts to peak”, “Counts”, “Rise angle”, “Decay angle”, 
“Energy”, “Absolute energy”, “Signal strength”, “Average frequency”, “Initiation frequency”, 
“Reverberation frequency”, “Zero crossing”, “Zero crossing frequency”, “FFT max amplitude”, 
“FFT width with 10% max amplitude”, “FFT width with 30% max amplitude”, “FFT crossing at 
30% max amplitude”, “frequency centroid”, “Peak frequency”, “Peak power”, and “RA value”. 

One of the features: the amplitudes of AE signals of level-I and II are presented in Figure 5. It can 
be observed that the amplitudes decreased with the increase of the distance from the AE sensor to 
impact location (from sample 1 to 1200). The decay in amplitude was induced by the AE wave 
disperse and attenuation. The amplitude of impact level-II is slightly higher than level-I because 
the energy release by the impact level-II more significant than the impact level-II. While they have 
a similar decreasing trend. The decision tree will recognize the difference between the 23 features 
and classify the signals into their impact levels and impact location. 
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Figure 5. AE signal amplitude: (a) impact level-II; (b) impact level-I 

4.2 Impact level assessment 
The feature dataset was forwarded to the decision tree model as input. 2/3 of data in the dataset 
were randomly selected and utilized as training data, the rest 1/3 were employed as testing data. 
The accuracy for the impact level identification is 97.6%. The results are presented in Figure 6a as 
a confusion matrix. 394 signals of level-I were correctly identified, 6 were identified to level-II by 
error. 387 signals of level-II were correctly identified, the rest 13 were identified to level-I by 
mistake. 

 
(a) (b) (c) 

Figure 6. Impact level identification and localization results: (a) impact level identification; (b) 
impact localization of impact level-I; (c) impact localization of impact level-II 

 

4.3 Impact localization 
After the impact level identification was completed, the feature dataset was then assigned to the 
AdaBoost model for impact localization. The training and testing ratio is the same as the decision 
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tree. For the impacts of level-I, the accuracy of the impact localization is 95.6%. The localization 
results are shown in the confusion matrix (Figure 6b). Out of the 400 test signals, 383 AE signals 
were correctly located. In zone 1, 99 signals were correctly localized, while the remaining one 
signal was localized to zone 2 by mistake. In zone 2, 96 signals were successfully localized, and 
one was mistakenly localized to zone 1, the other 3 were located to zone 3 by error. In zone 3, 92 
signals were localized to the correct zone, and one was localized to zone 1, one was located to 
zone 3 by error, the rest 6 were located to zone 4 by mistake. In zone 4, 96 signals were located to 
the right zone, the other 4 were localized to zone 3 by error. 

For the impacts of level-II, the localization accuracy is 95.2%. The localization results are shown 
in Figure 6c.  98 signals in zone 1 were correctly localized to zone 1, one was located to zone 2, 
the remaining one signal was assigned to zone 4 by mistake. The number of signals in zone 2 that 
were successfully classified was 94, 2 were mistakenly localized to zone 1, and the rest 2 were 
assigned to zone 3 by error. In zone 3, 93 signals were correctly localized, and 3 were successfully 
localized to zone 2, the rest 4 were located to zone 4 by mistake. In zone 4, 96 signals were located 
correctly, the other 4 were localized to zone 3 by error. 

5. CONCLUSIONS 
In this paper, an impact experiment was conducted on a composite elevator specimen by using 
steel spheres with two different dimensions. AE monitoring was employed to collect AE signals 
during the experiment. A decision tree model was utilized to identify the two impact levels. An 
AdaBoost model was assigned to give the impact localization results. 

Pertinent conclusions are: 
1. By utilizing AE monitoring and a decision model, A good performance (97.6%) on the impact 

level identification can be observed.  

2. The AdaBoost model could accomplish the impact localization with an acceptable accuracy 
when a single AE sensor is used. No obvious difference in localization accuracy was observed 
(95.6% for impact level-I and 95.2% for impact level-II) when the localization was conducted 
for the impacts with two different energy levels.  
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